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Abstract. Simulating the evolution of cities suggests the ability to un-
derstand and model the laws governing urban dynamics. The approach
presented in this paper uses a multi-agent system to model the self-
organising properties of urban systems. The proposed multi-agent sys-
tem is a hierarchy of topographic agents (e.g. buildings, roads, rivers or
urban blocks) that are built, modified, merged, split, restructured and
destroyed over time. Each agent’s behaviour is controlled by a set of con-
straints and associated actions. In the proposed system, only topographic
objects are taken into account, assuming a certain independence between
society and the urban form (morphology) as well as a delay between the
action of the society on the urban form and the feedback of the latter to
the former.
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1 Introduction

1.1 Urban systems as complex sytems

Urban systems are extremely complex systems composed of a very large number
of parts at several geographic, social and economic levels [1]. All actors partic-
ipating in the elaboration of urban development policies are dealing with this
complexity every day. Constraints on urban development stemming from sustain-
able development reinforce the need for a better understanding of urban systems
and for better tools to anticipate their future evolution. The development of com-
plexity theory [2, 3] has provided a rich theoretical framework for a wide range
of traditional as well as interdisciplinary scientific fields. Such fields include com-
puter simulation applied to social sciences [4] and urban systems [5], biology [6],
but also artificial organic system growth [7], behavioural animation [8] and many
more.

1.2 The GeOpenSim project

The GeOpenSim project aims at developing original models to analyse urban
evolutions from historical databases and to simulate urban dynamics based on
the observed evolutions and hypotheses [9]. Historical databases are built using
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recent topographic databases as well as historical aerial photographs and maps.
These spatio-temporal databases are analysed in order to identify evolution rules
at an aggregate level (e.g. cities and urban blocks) as well as statistics on specific
items such as buildings. Each simulation is parametrised with such evolution
rules, either directly produced by automatic analysis or specified by experts.

2 The simulation of urban dynamics using a Multi-Agent
System

2.1 From cellular automata to vector agents

The simulation of urban dynamics has been widely studied in the last decades.
In particular, cellular automata have been extensively used in urban simulation
and allowed the simulation of various and complex phenomena such as urban
growth and segregation [10–14]. Nevertheless, as pointed out by several authors,
cellular automata assume a certain homogeneity of space and neighbourhood and
several models were proposed in order to integrate the influence of the urban
network and spatial constraints on the accessibility of the cells of the automata
[15]. Finally, the introduction of graph-based cellular automata [16–18] allows
to better take into account the neighbourhoods of geographical objects and the
irregularity of the urban structure. The contribution of our approach to these
relies in the use of hierarchical structures allowing for emergent behaviours at
the micro level (building, roads, etc.) as well as regulating behaviours at several
meso levels (building block, districts, etc.).

2.2 A hierarchical Multi-Agent System

The multi-agent system proposed in this paper is greatly inspired by previous
work on automated map generalisation [19–21]. These automated map gener-
alisation models use a hierarchical multi-agent system which transforms carto-
graphic objects in order to produce a legible map. In such systems, agents have
to balance legibility constraints with preservation constraints that preserve the
global accuracy of the map. Legibility constraints are fixed depending on percep-
tion criteria, the scale of the resulting map as well as cartographic knowledge.
The constraints involved in urban simulation are thus very different. Indeed, in
the context on urban dynamics, legibility constraints do not apply and preser-
vation constraints, when they are used have a different goal and bear a different
meaning. In fact, in our multi-agent system, preservation constraints are used to
preserve a certain organisation in a meso object. For instance, when densifying
an urban block, such constraints can be used to ensure that the densified urban
block is structurally similar to the initial one. On the contrary, preservation con-
straints can be lifted when the objective type of the urban block differs from its
initial type, which is the case for urban renewal. Building from an existing and
well-tried model, the multi-agent system has been adapted and enhanced with
several features including evolution rules and populating functions.
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2.3 Evolution rules and strategies

In order to set appropriate goals to agents, evolution rules are defined, either
by analysis of spatio-temporal data or by expert knowledge. These rules are
the equivalent of transition rule in cellular automata, taking into account the
neighbourhood of each agent as well as the type of the agent and the dates at
which the evolution takes place. Indeed, evolution rules are defined for a specific
period of time which allows for the use of different evolutions both in speed
(growth is not constant in time) and in nature (building blocks are densified
differently in different parts of the city but also in different times depending on
urban regulations, building techniques, etc.). Populating functions are defined in
order to model the different strategies agents can use to evolve. Such functions
can, for instance, specify the way urban blocks densify themselves, either by
reproducing the existing internal structure, by restructuring themselves or by
diversifying their structure.

3 Agents, rules, constraints and actions

The goal of our approach is not directly to model specific knowledge on urban
dynamics. Our approach aims at providing a Multi-Agent System capable of test-
ing and evaluating such knowledge in the form of evolution rules and evolution
functions. Therefore, we propose a formalism to implement this knowledge.

3.1 From buildings to cities

As presented previously, the GeOpenSim model is based on the use of several
levels: city, districts, blocks, micro objects (mainly buildings and roads). Topo-
graphic databases usually contain almost only micro objects. The objects of the
meso levels are built hierarchically using the methods proposed by Boffet [22]
(see figure 1). Some other patterns of micro objects such as buildings alignments
are used too.

Fig. 1. The different levels of the GeOpenSim model: city, district, block, building and
road
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At each level of the complex system, objects have their own dynamics, differ-
ent agents have their own ways to evolve. The GeOpenSim project focuses on
the evolution of some morphologic characteristics of these objects. Some of the
considered morphologic characteristics are listed below:

– City: built-up surface, composition (housing rate, industrial rate, etc.), ac-
cessibility, etc.

– Districts: composition (industrial, housing, city center), buildings shape, etc.
– Blocks: density, buildings shape, composition, accessibility, empty spaces,

etc.
– Buildings: nature (industrial, housing), shape and size indicators (area, elon-

gation, orientation, etc.).

The GeOpenSim model uses several databases representing the same city at
different dates. By building and comparing the objects of the different levels
at different dates, the way the city has evolved in the past can be analysed
(automatically using machine learning or by experts). This knowledge on urban
dynamics is formalized into evolution rules. The evolution rules give an overview
of how the morphological characteristics of the objects have evolved in the past.
For example, the growth rate of a city during a time period can be analised,
as well as the fact that an industrial district has turned into a residential one,
the fact that a given urban block has been first urbanized with small houses,
and then with bigger buildings, etc. These evolution rules can then be used to
simulate the evolution of the city.

3.2 An agent’s lifecycle

To simulate the evolution of the city, its state for date t + δt is computed from
its state at date t. Evolution functions express the behaviour of agents’ char-
acteristics over time. To compute the state of a city at date t + δt, a copy of
the previous state is made and then modified using evolution actions. Neverthe-
less, the state computed using evolution rules is not the final state but rather a
view of the target state. Indeed, each evolution function only represent a certain
view of the evolution of an object. First because the evolution of characteristics
such as urban blocks density, urban blocks type (land cover) or urban blocks
accessibility all represent different points of view on the same phenomenon but
might not be able to fully represent in a single equation the full complexity of
the phenomenon. Second because increasing the density of an urban block does
not actually add buildings to it, the simulation at the micro level still has to be
successfull. This is, in fact, the place where emergent properties of the system
can occur: the meso levels set target values but are still constrained by the evo-
lutions of the micro level. For instance, if at the micro level, building agents are
constrained to keep a distance of 100 meters between them, a high density of
urban blocks will never be achieved and therefore, if the city wants to increase
its built area, it might have to look for low density urban blocks to add new
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buildings. Therefore, the actual evolution agents go through in order to fulfill all
these (possibly conflicting) evolutions is simulated as a constraint solving prob-
lem.
In order to obtain a new state, each agent has a set of constraints assigned to
its evolving morphological characteristics. The target value of these constraints
is given by the evolution rules or, possibly, by an existing meso agent the agent
belongs to. The purpose of the agent is to transform itself in order to have its
constraints satisfied. To do that, the agent will autonomously apply some evolu-
tion actions, and check the effect of this application on its constraints in order to
get a state where all these constraints are satisfied at best. The agent’s lifecycle
is illustrated in figure 2. Through this lifecycle, the agent tries several actions in
order to make its constraints satisfied.

Fig. 2. Agent lifecycle.

Figure 3 gives an example of the way the new state of a block agent is computed.
An evolution rule on this agent demands it density to increase of ∆. At the date
t + δt, the agent is unsatisfied. Some actions are tried by the agent during its
lifecycle and provide a set of new states. The best one, where the constraint on
the density is now satisfied, is selected as the state of the agent at the date t+δt.
Figure 4 illustrates the simulation of the densification of an urban block.

3.3 Regulation, interaction and emergence

All agents of the hierarchy have the same lifecycle: they all have constraints on
their morphological characteristics and try actions to satisfy their constraints.
Meso agents have a specific action related to their components. They are able
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Fig. 3. An urban block agent with evolutions rules setting a target density of d + ∆
(with d the intial densisty). In order to satisfy its density constraint, the agent tries
different actions and chooses the one that produces the best constraint satisfaction.

Fig. 4. A city block densification.
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to tune the target values of their components’ constraints, and to activate them.
Component agents try to satisfy the constraints assigned by their parent meso
agent: its meso controller. If a component is not able to satisfy its meso request,
it notifies its meso agent of the failure. The meso can then try another action, by,
for instance, trying to change the constraint target values of other components
and activating them. This mechanism enables interactions between different hi-
erarchical levels.
Interactions are also possible between micro agents and more generally by agents
of the same hierarchical level. For instance, buildings and road are able to per-
ceive their environment to analyse their context. A newly created building tries
to be close enough to a road to satisfy its accessibility constraint, a building that
is created in a block tries, if specified by such an evolution rule, to have the same
morphological characteristics as its neighbours, a road tries to be connected to
the network, etc.
The combination of these interactions allows complex urban dynamics to be
obtained. For example, we could consider a city whose evolution has been anal-
ysed using some historical data. We suppose that the built-up area of this city
increases of 0.5% each year, with a constant ratio of housing and industrial build-
ings. To compute the evolution of the city from date t to date t + δt, the city
agent is constrained to have its built-up area increased of 0.5% and its compo-
sition preserved. When it is activated, the city agent will be unsatisfied and will
try to evolve until its constraint is satisfied. The action it will trigger could be,
for instance, to find the best district where new buildings will be built. This
district could be chosen using different strategies, for instance:

– urban growth: in this case, the chosen district will be a peripheral one. New
buildings will be created outside the city. The city will grow.

– urban densification: in this case, the chosen district, more central, will be
densified. New buildings will be created where empty spaces with a good ac-
cessibility are present, or some small buildings will be destroyed and replaced
by bigger ones.

The selected district will then decide which of its blocks to activate with a
new target value on their density. These blocks will then create buildings inside
themselves as presented in figure 3. If the city is organized into, for example,
housing and industrial districts, some of the new urbanized surface could be
affected to some of these districts. If all industrial districts are too dense for
new industrial buildings to be created inside them, the city could then decide
the creation of a new industrial district, or the creation of industrial buildings
into a housing district, thus diversifying the district. This simple example shows
that the rules used at the micro level (here to create new buildings) can have an
effect at a larger scale and give birth to emergent behaviours of the system.

4 Evolution rules application

Evolution rules can be used at different levels to model different aspects of
the evolution of urban space. In this section, two simple evolution rules are
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illustrated. The illustrated rules are comparable to cellulat automata rules, but
the neighbourhood they take into account is topological. The first rule affects
city blocks density 5. This exemple shows an exagerated urban growth where
urban blocks tend to the maximum of the density of their neighbourhood.

Fig. 5. Applying a simple evolution rule to city blocks to set a target density value. As
in cellular automata, initial city blocks neighbourhoods (left) are used to affect target
values (right).

The evolution rules can also concern other characteristics than the density such
as the urban blocks type. In this example, we consider the evolution of the
land cover of a district with different types of block. The classification of urban
blocks used here is largely based on the nomenclature of EU land cover database
(Corine Land Cover) [23]. We considered 4 simple classes: continuous urban
fabric, discontinuous urban fabric (in red in figure 6), industrial or commercial
units (in magenta in figure 6) and agricultural areas (in yellow in figure 6). To
increase the density of an urban block, new buildings have to created into the
block. The kind of the erected buildings depends on the type of the block. In the
case of agricultural area, there is no information on the kind of buildings to add.
In this example, we consider a very simple rule that fixes the goal type of an
agricultural block according to the type of its neighbours. The same urban block
can be constrained by several evolution rules: for example by a rule on the density
and by another on the type of block. These evolution rules can be complementary,
as it is the case if the rules increase the density of a discontinuous urban fabric
block. But they can also be in contradiction, by example, if they constraint an
increase of the density of an agricultural area. In this case, the result of the
simulation cannot be predicted and mainly depends on the behaviours of micro
objects allowing emergent phenomena.
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Fig. 6. Applying a simple evolution rule to city blocks to set a target land cover type.
As in cellular automata, initial city blocks neighbourhoods (left) are used to affect
target values (right). Here, the illustrated rule states that agricultural areas with a
neoghbourhood dominatedby discontinuous urban fabric tend to become discontinuous
urban fabric.

5 Conclusion and perspectives

In this paper, an original Multi Agent System for the simulation of urban dy-
namics as a complex system was proposed. The dynamics of the simulation is
controlled by high level evolution rules taking into account the environment of
each sub-system. These rules are combined with a constraint-based approach to
reach the target values fixed by the rules.
The intention of this paper is not to propose new geographical knowledge but a
framework to implement and evaluate hypotheses on urban dynamics. Indeed,
these evolution rules can be used for simulation and the results compared to real
data. In this paper, simple evolution rules were used to illustrate the possibili-
ties of the system. Nevertheless, evolution rules can be defined by experts but
also analysed from historical databases. An important effort is being given in
these areas to offer sufficient freedom to expert to specify their own evolution
rules but also to automatically learn new rules from historical databases using
machine learning and calibrate them as well as the constraints and their asso-
ciated actions with real evolutions. Future work will also be done to go further:
new constraints, new spatial analysis methods, new evolution functions and new
populating functions will be implemented and tested.
Finally, GeOpenSim provides a model to deal with different levels of a single
city, from urban districts, to buildings and roads. A first extension of the model
would be to include the city under study into a system of cities [24]. As men-
tioned before, in order to study the urban form independantly, one has to assume
a certain independance between society and the urban form [25, 26]. The second
extension of the model would therefore concern the integration of social agents
into the simulation [27, 28]. Such a system, using both morphological and social
agents, would allow to study the impact of society on the urban form and the
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feedback of the latter to the former. Other sources of data such as economic data
(estate market) could also be taken into account and their impact, as well as the
impact of planning regulation of the evolution of the urban form.
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pp. 167-200, Springer-Verlag (2008)

8. Lamarche, F., Donikian, S.: Automatic Orchestration of Behaviours through the
management of Resources and Priority Levels. In: Autonomous Agents and Multi
Agent Systems. ACM, Bologna, Italy (2002)

9. Perret, J., Boffet-Mas, A., Ruas, A.: Understanding Urban Dynamics: the use of
vector topographic databases and the creation of spatio-temporal databases. In
Proceedings of the 24th International Cartography Conference (ICC’09) (2009)

10. Couclelis, H.: From cellular automata to urban models: new principles for model
development and implementation. Environment and Planning B: Planning and De-
sign 24 (2), 165-174 (1997)

11. White, R., Engelen, G.: Cellular automata as the basis of integrated dynamic
regional modelling. Environment and Planning B: Planning and Design 24 (2), 235-
246 (1997)

12. Batty, M., Barros, J., Alves, S.: Cities: continuity, transformation and emergence.
Working paper. CASA Working Papers (72). Centre for Advanced Spatial Analysis
(UCL), London, UK (2004)

13. Batty, M.: Cities as complex systems: scaling, interactions, networks, dynamics
and urban morphologies. Working paper. CASA Working Papers (131). Centre for
Advanced Spatial Analysis (UCL), London, UK (2008)

14. Werner, P.: Application of Cellular Automata and Map Algebra in Studies of Land
Use Changes. The Neighborhood Coefficients Method. Geoinformatica Polonica,
vol.9., Polska Akademia Umiejtnoci - Wydawnictwo, Krakw (2009)

15. Batty M., Xie Y.: Possible urban automata. Environment and Planning B : Plan-
ning and Design, vol.24, n2, p.175-192 (1997)

16. O’Sullivan, D.: Graph-based cellular automata models of urban spatial processes.
Ph.D. Thesis. University College London, London (2000)

17. O’Sullivan, D.: Exploring spatial process dynamics using irregular cellular automa-
ton models. Environment and Planning B : Planning and Design, vol.28, p. 687-705
(2001)



11

18. Badariotti, A., Banos, A., Moreno, D.: Conception d’un automate cellulaire non
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