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Abstract

A quality-control method is proposed for examining continuous physical and chemical measurements, including tempera-
ture, dissolved oxygen, pH and electrical conductivity. Firstly, measurement consistency is evaluated by various modelling
approaches: internal series structure, inter-variable relations or relations with external variables, spatial coherence and deter-
ministic models. Secondly, outliers or systematic errors are detected using classical statistical tests. The method was evaluated
for dissolved oxygen concentrations (DO) in the river Loire at Dampierre over a 5-year period (1990—1994), using data records
containing fictitious errors, and raw data for the year 1995. The results demonstrate the effectiveness and advantages of a multi-
model approach. In the case of dissolved oxygen for example, slow continuous drifts are always detected in under 4 days.
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1. Introduction

Instruments capable of making continuous in situ
measurements of water quality are useful in detecting
short-term changes in water composition. Water
temperature, electrical conductivity, pH and dissolved
oxygen (DO) are the most commonly monitored vari-
ables (Ranalli, 1998). Benefits of this continuous in
situ monitoring include trend analysis. Considerable
research has been devoted to water temperature, no
doubt due to its long and reliable record (Webb,
1996). Studies of acidic streams consider variations
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in electrical conductivity and pH in terms of chemical
and hydrological processes (Robson et al., 1993).
Studies of eutrophic rivers use diurnal DO and pH
measurements to estimate stream reaeration, primary
production, and respiration rates (Chapra and Di Toro,
1991).

Data collected from in situ monitoring, by the elec-
tricity generating authority (EDF) at the nuclear
power station, for example, are only useful if the
measured values represent the in situ values. It is
therefore essential to examine data critically and vali-
date them by checking measurement consistency, in
order to distinguish measurement anomalies from
environmental changes. A strategy for critically
examining and validating this type of data has been
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France

Fig. 1. Location of the Dampierre en Burly study site.

developed (Moatar, 1997) and is discussed in this
article.

2. Description of site and monitoring system

The river Loire is about 1012 km long, with a
catchment area of 115,000 km? in central and western
France (Fig. 1). The Dampierre site, considered in this

study, is 550 km from the source and drains an area of
35,500 km”.

a)
20
% outliers system monitoring
Es recalibration
8
12
g : drift
3 °1il
2
g a
]
[a]
0+ y + }
20/7/94 30/7/94  9/8/94 19/8/94 29/8/94
time (days)

The monitoring system consists of a floating plat-
form with a sensor that measures water temperature at
a depth of 20 cm, and a pumping device that sends a
small flow of water (approx. 0.51/s) to three electro-
des: pH (range 0—14 pH unit), DO (range 0—-20 mg/1)
and electrical conductivity (Cdv) (range 0—1000 p.S/
cm). Instantaneous measurements, taken every 5 s, are
archived as hourly means. There are three monitoring
stations: one upstream, one at the outflow of the power
plant, and one 5 km downstream. Accuracy of the
measurements (including electrode, transmission,
and calibration), tested in situ by comparison with
laboratory measurements, is estimated to be *=0.3°C,
*£0.3 pH units, =8% mg/l DO, =5% pS/cm Cdv.
Accuracy is defined as two times the standard devia-
tion (S.D.) of the control sample readings. In spite of
the control procedures, the data still contain anoma-
lies, including outliers, gaps and systematic errors
(discontinuities and drifts) (cf. Fig. 2a and b). Fig.
2a shows a measurement drift due to clogging of the
sensor. Fig. 2b shows modification of the sensor and
transmitter rating curves resulting in linear drifts in
the DO measurements, with deviations ranging from
=5 to +50%.

3. Quality control and validation method

The proposed method is based on three stages: (i)
modelling, (ii) statistical analysis of model residuals,
(iii) detection, diagnostic and correction.

(1) Modelling involves evaluating the probable
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Fig. 2. Examples of errors: (a) outliers and drift due to clogging of the sensor; (b) rating curves.
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value of the variables. It must be rapid, robust and
reliable. A set of deterministic and stochastic models
is chosen, based on analysis of the variables (internal
structure), determination of inter-variable and inter-
site relations, and assessment of relations with
external variables that are reliable and available
daily. The internal structure of the series X(t) is
analysed using time series analysis methods (Box
and Jenkins, 1976). Data series with seasonal change
only in the mean (temperature, conductivity, mini-
mum oxygen value) are centred U(f) = X(r) —
Sm(t), while those with a seasonal change in the
inter-annual standard deviation (daily range of DO
and pH) are standardised. Harmonic analysis is
performed to estimate these seasonal features:

Sm(t) = ay + Za cos( ) Zb sm( ) 1)

=1

where a; is the interannual mean, 7; the harmonic
period i (days) and a; and b; are the harmonic terms.
The stationary residual series U(f) enables the struc-
ture of the series, and particularly its ‘memory’, to be
studied. Autocorrelograms for the various series
enable selection of autoregressive models AR(n),
with different orders of n depending on the variable
involved.

Inter-variable relations involve evaluating a
variable (or component) as a function of another
variable (or component) measured at the same station.
Only relations between daily range of DO and daily
mean of pH, and daily minimum DO value and daily
mean of water temperature prove to be significant.
Inter-site relations prove to be an effective means of
detection, owing to the spatial consistency between
the sites. Measurements at the upstream and down-
stream stations are highly correlated or even identical,
owing to the minimal influence of the outfall on the
physico-chemical characteristics of the water.

Relations with external variables mainly involve
hydrometeorological variables. Air temperature is
used to model water temperature. Solar radiation,
discharge and water temperature are used to evaluate
DO; solar radiation and discharge to estimate pH, and
major anions and cations to estimate electrical
conductivity. The most appropriate stochastic model-
ling methods are applied for each variable: Box and
Jenkins transfer functions (Box and Jenkins, 1976) for

linear relations (water temperature, daily minimum of
DO), neural networks for more complex and non-
linear relations (Moatar et al., 1999a) and multiple
correlation for variables with non-equidistant obser-
vations uncorrelated in time (electrical conductivity).
For daily DO ranges, an empirical model was chosen,
involving non-linear optimisation of conceptual
equations parameters.

For the deterministic models, specific features of
the middle Loire enable simplifying assumptions
to be made in developing the models. This stretch
of river normally shows a balance between thermal
and ecological features and local meteorological
conditions. There are no major tributaries affecting
either hydraulic head or pollutant load. The water is
relatively shallow and well mixed. Temporal varia-
tions in the variables are very pronounced. Conse-
quently, equations defining changes in water
temperature and DO can ignore upstream boundary
conditions (Gilbert et al., 1986; Chapra and Di Toro,
1991).

(ii) Statistical analysis of model residuals involves
comparing measurements of the variable, Cy, with the
model forecasts, M; (i = 1 to k models), using a series
of ‘classical’ statistical tests (test of mean and test of
gradient using sliding windows and Page—Hinkley
cumulative test) described by Ragot et al., 1990.
These tests are performed for normal variables with
independent observations (Barnett and Lewis, 1995).
It was therefore decided to work on the residuals
between measurements and model forecasts, €,(¢),
and to decorrelate these series by autoregressive filters
to extract the independent residual series wu,(?).

To detect a change in the mean signal wu(t), the
mean, m;, is calculated using the current mobile
window F;, size n, and the test variable u;: u; = (m; —
mg)/(oy/+/n), where the reference mean, m,, and the
reference S.D., o, are assumed to be known. These
reference values are evaluated using a different and
much larger sample, theoretically containing no
measurement errors. In the absence of any change,
the test variable u; has a normal centred and reduced
distribution. If there are no reference values for testing
the calculated values, these are evaluated using two
windows (size n; and n,) to enable a comparison to be
made. In this case, the test variable ¢; follows a Student
law with n; + n, — 2 degrees of freedom.

To detect a discontinuity, it is also possible to
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calculate the slope of the regression curve y;,; on the
ith mobile window of size n, fitting it as closely as
possible to the signal.

j=1,..n 2)

A variable for testing the significance of coefficient
by; is then estimated by applying the classical results
concerning simple linear regression. The reduced
deviation: t; = by;/s(by;) is distributed according to
Student’s law with (n —2) degrees of freedom
(s(by;) being the variance of the parameter b;).

The Page—Hinkley test (Baseville, 1986),
performed as a cumulative test sum, consists in fixing
a minimum jump, & to be detected, and running two
tests in parallel, the ‘direction’ of the jump not being
known a priori. The variable to be tested is redefined
as

z 1)
Un = Z (/J“(t) —my — E)»

i=1

Yirj = bij + by,

n>0and Uy=0

3

m, = min (U,)
0=k=n

n

1)
Tn = Z (,LL(I) —my + E),

i=1

n>0andTy=0

“

M, = max (T})
0k(n

The detector signals the first time, n, at which U,, —
m, > Ain the case of an increasing mean, and the first
time, n, at which M,, — T,, > A for a decreasing mean.
For the limit, A, Ragot et al. (1990), suggest the
expression: A = 2hoy/6 where h is equal to 2 for
normal distributions and o is the S.D. of the signal.

(iii)  Detection, diagnostic —and correction.
Wherever an anomaly is found, measurement consis-
tency is checked. Measurements, model results, and
residuals are analysed to identify the origin of the
anomaly, which could be a drift, error, incident during
measurement, accidental external phenomenon
(pollution), limit of model validity, etc. When the
measurement is suspect, a correction is proposed.

The method was validated by performing efficiency
tests based on simulated error detection. Two types of
perturbation were systematically introduced into the

minimum values series and daily range of DO: linear
drifts, characteristic of a modification in the rating
curve (cf. Fig. 2b), and damped type drifts (exponen-
tial), characteristic of the sensor becoming clogged
(cf. Fig. 2a). Both the efficiency of the proposed
tests and speed of detection could thus be evaluated
(cf. Section 4.3).

4. Application of the method to dissolved oxygen

Data recorded between 1990 and 1994 at the
Dampierre station were used for finalising the method,
as follows:

e Development and calibration of models covering 4
years (for which data quality could be checked) and
cross-validation over one year: each of the 5 years
was chosen in turn as the validation period, the
other four being used as calibration. This allowed
the robustness of the models and the quality of the
data to be checked. Iterations were necessary
between the first calibration, problem detection,
elimination of doubtful periods and a second cali-
bration.

e Introduction of artificial perturbations into series
considered to be ‘correct’, i.e. homogeneous
periods with stationary measurement/model
residuals and small standard deviations.

e Raw data for the year 1995 were then used for
overall validation of the quality-control technique.

4.1. Modelling of dissolved oxygen

Changes in DO can be represented by two compo-
nents which have specific behaviour patterns: Daily
minimum values (denoted DO,,;,) close to saturation
are relatively predictable from the water temperature,
and daily ranges (difference between DO,;, and
DO,,.x, denoted ADO) reflect the hydrological regime
and seasonal photosynthesis activity of phytoplankton
(Moatar et al., 1999b). Stochastic modelling was used,
based on these two components.

4.1.1. Internal structure

The minimum value of DO for a given day is the sum
of the annual component DO,;,[S(#)] and short-term
component DO,,;,[U(¢)], which explains the daily
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Fig. 3. (a) Annual cycle of daily minimum DO and of water temperature. (b) Short term evolution of DO,, versus short term evolution of water

temperature (cf. Moatar et al. 1999b).

fluctuations.

DO yin (1) = DOy [Sm()] + DOy [U(1)] &)

Spectral density analysis shows that the first two
harmonics are sufficient for a proper representation
of the seasonal component DO, [Sm(f)] (R2 =
0.72). The coefficients of the harmonics (Eq. (1)) are
as follows: ay=9.55; T, =365, a;, =232, b =
0.73; T,=182, a, = —0.05, b, = —0.28. The
short-term component is an autoregressive process
of order 1:

DOyin[U(N] = 0.91DO0y;n[U(r — D] + €(1) (6)

As the daily ranges of DO displayed a S.D. that
varied over the year, the series was standardised.
The model for the short-term component ADO[U(f)]
is an AR(3):

ADOI[U(1)] = 0.47ADO[U(t — 1)]

+0.20ADO[U(t — 2)] + 0.19ADO[U(t — 3)] + ()
(7N
4.1.2. Inter-variable relations

The annual cycles of DO,,;, and water temperature
are remarkably in phase (Fig. 3a). The lowest values
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Fig. 4. (a) Annual cycle of daily minimum DO and of water temperature. (b) Short term evolution of DO,;;, versus short term evolution of water

temperature (cf. Moatar et al., 1999b).
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of DO, are observed in July and August, concomi-
tant with the highest temperature values. Similarly,
the highest values of DO,,;, are concomitant with the
lowest temperature values in December and January.
Comparison of the short term components, obtained
by removing the seasonal trend of DO,,;,[S(#)] and
water temperature 7[S(¢)], shows a reasonably strong
linear relationship (Fig. 3b). According to the pattern
in the cross-correlation function (exponential
decrease from lag 1) (Vandaele, 1983) and after test-
ing several models, the model with the minimum
Akaike’s information criterion was chosen for the
short-term component of the minimum value of
DO(DO,,in [U* (1)) :

DO,in [U* ()] = —0.26T[U(1)] + €(t) ®)

where T[U(#)] is the short-term component of the
daily mean water temperature 7(¢).

The ranges of DO and pH are influenced by photo-
synthesis and phytoplankton respiration via CO,. The
annual cycle of the DO range shows a similar pattern
to that of the daily mean of pH (Fig. 4a). During
periods of relatively constant and low flow in
summer, the daily maximum of pH occurs system-
atically half to 1 h later than the maximum of DO.
Conversely, during wintertime and summer flood-
ing, DO and pH are controlled by physical and
chemical rather than biological processes, and
daily cycles level off significantly (Fig. 4b)
(Moatar et al.,, 1999b). After eliminating the
seasonal effect in both variables (ADO and daily
pH), the following relationship was determined by
linear regression:

ADO[U*(#)] = 3.89 pH[U(1)] ©)

4.1.3. External variables

The mass balance (O’Connor and Di Toro, 1970)
(photosynthesis, respiration and reaeration) has been
adapted to local and daily conditions (Moatar, 1997).
The daily DO range could therefore be expressed as
the sum of two factors: the first representing the effect
of temperature (7}, and Tj,;,) on DO saturation
concentration, and the second (denoted ADO_B)
the ratio between photosynthesis (P) and reaeration

rate (k,).
P
Domax - DOmin = [Dosat(Thmax) - Dosat(Thmin)] + k_
(10)

Tymax and Ty represent the temperature corre-
sponding to maximum and minimum DO timing. In
the Loire, during photosynthesis periods (favourable
meteorological conditions) and where flow is constant
and rather low, the DO peak is observed around 3 or
4pm, and the minimum before sunrise (5 or 6am).
However, during medium or high flow, these cycles
shift progressively until they eventually invert, DO,
being observed during the day (approx. 2pm) and the
maximum around midnight. Photosynthesis is weak
during these periods, as DO production is controlled
by the physical equilibrium between water and atmo-
sphere (Moatar et al., 1999b).

Photosynthesis is represented as P =f X CP X
PHY where f is a calibration parameter representing
the conversion of algal growth into oxygen potential
(mgDO/p.gchla,), CP is algal growth rate and PHY is
living phytoplankton (mgchla,/m?). Algal growth rate
is expressed as a classical multiplicative relation
(Bowie, 1985) between light effect h(ly, H) and
temperature effect g(7): CP = ¢y, H)g(T),
where ¢« 1s a calibration parameter (dayfl) repre-
senting maximum growth rate (when ([y,H) =
g(T) = 1). Steele’s equation (1962), integrated over
flow depth H, represents the effect of light attenuation
on growth h(ly,H). Lassiter and Kearns’ formula
(1973) was used to represent the effect of temperature
on metabolic growth processes g(7'), where T is the
daily mean temperature.

The reoxygenation coefficient k, is defined by
O’Connor and Dobbins’ equation (1958). It is
expressed as a function of discharge via the empirical
formulae established for the middle Loire (H =
0.1340%41%*; v = 0.1650°2'7). The light extinction
coefficient k. in Steele’s formula (after integration and
averaged along the vertical) and the biomass PHY are
considered to be a power as a function of the
discharge (Q): k. = onB; PHY =m/Q". m and n
are calibration parameters. These parameters
were initially estimated from Secchi disk reading
measurements and from chlorophyll concentration
at the study site. These estimates served as initial
conditions for the optimisation algorithm. The
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Table 1

Root mean square error, RMSE and correlation coefficients R? for dissolved oxygen models

Autoregressive relation Inter variable relation

Inter-site relation

External variables relation Deterministic model

RMSE (mg/l)  R? RMSE (mg/l)  R*

RMSE (mg/l) R?

RMSE (mg/l) R? RMSE (mg/l) R?

DO, 0.50 0.92 0.74 0.83 0.79
ADO 0.96 0.90 1.50 0.79  0.86

081 - - 0.91 0.75
093 1.15 0.87 1.82 0.69

above considerations led to the following equation
for the factor ADO_B:

ADO_B=fc_, *le
max on 32.2 aQﬁO.134Q0'412

_I_Oe—aQﬁ0.134Q0'412 o

where CP is the growth rate (day "), expressed by the
same multiplication relation ¢, i(ly, H)g(T), and RP

I

pe <

PHY 1%k,

A series of factors was fixed, based on values eval-

1 -0 af__ -T )
m Q0.48‘ 1 Is . [s X ea T _Topt (Tmax -T) max opt
(Tmax - Topt)

(1D

> « >

h(l,, H) g(M)
the respiration rate (day ') considered as a calibration
parameter.

uated on site (Champ, 1980): Tqp = 25.6°C; Ty =
36°C; I, = 250 W/m?. Others were optimised using
the Levenberg Marquardt algorithm from Matlab
(The Math Works Inc, 1996): fcm = 447.2; n =
0.57; « = 0.01; B = 0.56; a = 0.14.

4.1.4. Deterministic model

The BIOMOX model (Gosse, 1989) was used to
determine DO and phytoplankton (PHY) on an hourly
basis. The DO equation was adapted and simplified
according to specific features of the Loire. The
benthic compartment was ignored (the river bed
consisting of soft sand). As BODS5 in the section
studied depends mainly on the phytoplankton biomass
(Khalanski, 1989), allochthonic contributions and
organic matter not connected with algae were also
ignored. The oxygen consumption terms for degrada-
tion of organic plant matter and corresponding nitrifi-
cation were therefore replaced by a term that depends
directly on the quantity of phytoplankton (cgq,,PHY)
(cqno being the coefficient representing organic matter
degradation (mgDO/p.gchla):

dDO
~ =/(CP—RP)PHY

d (12)
+k,1.025 22(DOy, — DO) — cgpoPHY

O’Connor and Dobbins’ formula (1958) was used
to determine the coefficient of reoxygenation at 20°C
(day_l). I, Topi, Trnax Were fixed on the basis of values
evaluated on site (Champ, 1980) and the parameters f,
Cmaxs» RP, cao Wwere manually calibrated:
f = 0.3 mgDO/pgchla,, cp = 1.5 day™'; RP=
0.05 day ~'; cgpo = 0.1 mgDO/pgchla.

4.2. Results for each model

Table 1 presents the root mean square errors
(RMSE) and correlation coefficients (R?) between
the measured and calculated DO values for minimum
values and daily range. Fig. 5a and b shows the time
series of DO,;, and daily ranges, ADO, for 1990. The
effectiveness of the various models is quite good (with
R? varying between 0.75 and 0.92), except possibly
for the representation of daily ranges by the determi-
nistic model (R* = 0.69, RMSE = 1.82 mg/l). This
model simulates minimum values better than range.
This is due to under-estimation of maximum values
of DO, due in turn to under-estimation of the
phytoplankton biomass at certain periods. The math-
ematical formulation adopted includes a single phyto-
plankton compartment, inadequate for simulating the
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Fig. 5. (a) Minimum daily values of DO (year 1990) (b) Daily ranges of DO (year 1990).

spring-time growth of algae observed in this stretch of
river.

The autoregressive model is shown to be the most
efficient, due to the strong autocorrelation existing for
the daily time step. This type of model could therefore
be highly effective in detecting outliers, but not slow
continuous drifts. For daily minimum values, the

‘inter-variable’, ‘upstream/downstream’ and determi-
nistic models are identical. The efficiency of these
models differs according to season (on average,
RMSE = 0.65 mg/l and R*=0.70 in winter, as
against RMSE = 1.2 mg/l and R* = 0.5 in summer).
The poor summer representation can be explained by
the difficulty in measuring DO content in summer
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Fig. 6. (a) Percentage of detection of introduced drifts: Detection in relation to the inter-variable model M,. (b) Detection times.

(because of risks of drifts and saturation due to the
development of algae). Also, the DO model does not
take into account biodegradation unconnected with
phytoplankton (allochthonic pollution).

With regard to the daily range of DO, the perfor-
mance of the inter-variable model depends to a great
extent on the quality of the pH data. For example,
from mid-January to mid June 1994, the external
variable model reproduced ADO quite well, while
the inter-variable model systematically over-
estimated them because of erroneous pH values.
In fact, the method of critical data analysis
applied to pH shows that this time period is
suspect (Moatar et al., 1999a). Otherwise, the
model provides much better results with
RMSE = 1.07 mg/l and R* = 0.85.

4.3. Results of tests with artificial perturbations

Linear drifts of variable levels (nd) and lasting one
week were introduced systematically into the
measurement series of daily minimum DO values at
the upstream site Cy, (Fig. 5a). Drift detection capacity
was then examined by using the statistical tests and
comparing them with the downstream site Cj, and
from the inter-variable model, M, and deterministic
model, M,. The deviations AC,(¢), AM,(t) and AM(7)
were decorrelated by AR(1) (cf. Egs. (13)—(15) and
the tests were applied to their residuals

mCi(5), uM,(r) and uM,(7) :

e, (1) = Ac, (1) = 0.88Ac, (1 — 1) (13)
g, (1) = Ay, (1) — 0848, (t — 1) (14)
s (1) = Ay, (1) = 0.91A,, (¢t — 1) (15)

For each drift level, the percentage detected by each
test was calculated for a confidence level (1 — «) of
95% for the three different reference cases (Fig. 6a).
The percentage detected was comparable in the three
cases. A drift of 4% per day on average was detected
in more than 90% of cases, with mean comparison
tests on 1 and 2 mobile windows. The slope test and
Page—Hinkley test were very poor at detecting drifts.
Regarding detection time, the mobile mean tests
detected the drift in under 3 days on average (Fig.
6b), which has interesting operational implications.

Exponential drifts were simulated for daily DO
ranges by the equation: D(t) = Cy(t) —
Co(Hnd(k)" "), where 1, is the beginning of the 7
days and nd(k) is the level of drift (nd(k) = 0.02k, k =
0,...,20). Mean comparison tests using mobile
windows were shown to be the most efficient in
detecting linear drifts introduced into the minimum
values. Detection by comparison with C; was slightly
better, with a drift level of 0.1% per day being
detected in 80% of cases on average, against 70% of
cases with M, and M,. Detection took 3.6 days on
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Fig. 7. Minimum daily values of DO (measurement to be checked C and two references: C; and ‘inter-variable’ model), as well as test variable

u; (year 1995).

average. Consequently, for real DO ranges of 6 mg/l,
sensor clogging was detected as soon as the measured
range dropped below 4 mg/l. Fig. 2a shows how using
this method could have avoided 20 days of erroneous
measurements.

Similar observations can be made for the other
variables. However, the sophistication of the models,
results and applicability depend on the variable
involved. Water temperature is a robust, exact
measurement, provided an appropriate measurement
site is chosen. When artificial anomalies were intro-
duced to test efficiency of detection, the estimate was
shown to be representative, both according to other
measurements, and to the properties of the models.
Detection by inter-site comparison was naturally
very good. Where a double measurement was not
available, the reference temperature, estimated from
models, showed greater disparity with the data (S.D.
of the residuals for the External Variables model =
0.9°C and S.D. of the residuals of the deterministic
model = 1.2°C). A sudden discontinuity of 0.4°C
was detected in all cases in inter-site comparison
and in 40% of cases with a 25% chance of false
alarms, when compared with the models. A
change of 1°C was detected by models in 60%
of the cases.

The other variables — DO, pH and electrical

conductivity — involve more sensitive measuring
systems, requiring calibration, compensation and
regular maintenance, and errors could be due to drifts
caused by the equipment. The models for DO and pH
enabled this kind of drift to be detected. However, the
results for electrical conductivity were inconclusive,
as the major anions and cations used by the models
were only available 6—24 days per year.

4.4. Results of application of the method to the year
1995

The raw results of DO measurements recorded by
the automatic station in 1995 presented obvious
‘errors’, i.e. outliers or gaps due to poor operation or
interruptions in the measuring sequence. Before any
work could be carried out on these series (e.g. simple
transformation for calculating rates and daily means),
outliers had to be eliminated and the series reconsti-
tuted as accurately as possible. The AR model applied
to short-term daily minimum values DO, [U(¢)] was
used to detect outliers (cf. Section 4.1.2., Eq. (8)).
The alarm threshold was set when the value of the
residuals was greater than four S.D. of the series
€(). Outliers were replaced by linear interpola-
tions, or by Fourier series in the case of daily
cycles.
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Fig. 8. Periods detected as being ‘doubtful’; (a) 25 March—May 1995; (b) 15 October—15 November.

The method for detecting continuous or sudden
changes in the DO measurement series at the upstream
station (C,;) was applied first to the minimum
values and then to the daily ranges. Fig. 7
shows the DO,,;, measured at the stations upstream
(Cy) and downstream (C;) and the values
‘predicted” by the inter-variable model. The
graph also shows the test variable u; for compar-
ing the mean of the residuals with a 7-day sliding
window and the control limit corresponding to a
confidence level of 95%. For minimum values,
detection tests revealed 33% of anomalies in
measured values compared with ‘probable values’
on the ‘inter-variable’ model, and 26% when
compared with the measured downstream value
C,. For daily ranges, there were 9% of errors
when compared with the ‘external variables’
model, and 14% compared with the downstream
measurement C. Fig. 8a and b describes two peri-
ods detected as ‘doubtful’.

Fig. 8a shows the shifts observed in the measured
and calculated values, and the dates of three inspec-
tions by the automatic station maintenance team. The
‘probable’ hourly values are reconstituted from
several models (inter-variable model for minimum
values, external variables model for daily range and
hourly reconstitution using a Fourier series). The
model provides very well-calibrated data before,
during and after the suspect period. The ranges and
variations are similar to the two signals.

5. Conclusions

Various deterministic and stochastic models have
been proposed in the literature for water temperature,
electrical conductivity, pH and dissolved oxygen. All
these models are geared essentially to environmental
forecasting and impact studies, but rarely to data qual-
ity control. Quality-control methods using control
charts exist for industrial processes (Steiner, 1984).
The control limits are generally determined by
product and process specifications. With regard to
natural water quality, these values vary over time
due to uncontrollable external factors (hydrometeor-
ological, physico-chemical and biological). It was this
aspect that was factored in when developing the
methods discussed here.

The principles of this method could be generalised
to other types of data. For example, Box—Jenkins
transfer/noise models for spatial interpolation of
groundwater head series have been proposed (Van
Geer and Zuur, 1997). Coupling these with statistical
tests would allow errors to be automatically detected
and critically examined, and missing data to be filled
in.
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