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a b s t r a c t

Fluid overpressure at the base of low-permeability strata reduces effective stress, allowing for gravita-
tional sliding of the overlying cover. The force driving sliding is the slope-parallel component of the
weight of the cover, whereas the resisting forces are the friction at the base of the cover and the but-
tressing resistance to shortening, which can be critically reduced by incision at the base of the slope. We
developed an analytical model and undertook a series of analogue experiments to better understand the
evolution of a sedimentary cover sliding above a low-permeability layer subjected to fluid overpressure.
Where a downslope buttress was present, the sliding sheet length decreased with increasing pore-fluid
pressure. In the absence of such buttress, the slide’s length increased exponentially with increasing pore-
fluid pressure. Another important difference dealt with geometry and kinematics. Buttressed slides
consisted of one large slope-parallel mass rigidly translated and bounded by downslope thrusts and
upslope normal faults. With increasing pore-fluid pressure, the contractional structures propagated
upslope. By contrast, non-buttressed slides showed intense strain: deformation started with normal
faults forming near the incision, then propagating upslope throughout the slide’s evolution.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Mass movements are a major erosional process along both
passive and active margins. The onset of gravitational instabilities is
the result of the effect of preparatory factors, such as the lithology
of the décollement layer and of the cover, coupled with external
predisposing factors reducing the forces resisting downward
motion, such as seismic activity (Keefer, 1984), heavy rainfall (Chen
et al., 2006) or fluid overpressure (Mourgues et al., 2009). In
particular, these factors cause the effective stress of weak layers,
such as shale, to decrease. Therefore, these layers may act as
décollement layers for the overlying cover.

Terzaghi (1923) and Hubbert and Rubey (1959) have demon-
strated that the effective rock stress of low-permeability layers,
hence the frictional force between such layers and the overlying
cover, can be critically reduced in the presence of fluid over-
pressure. Overpressures are responsible for promoting gravita-
tional submarine slides, as in the Amazon fan (Cobbold et al., 2004;
Mourgues et al., 2009), the Niger delta (Weber and Daukoru, 1975;
þ33 2 43833795.
e).
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Hooper et al., 2002), or the Champion delta (Van Rensbergen and
Morley, 2000), and avalanches (e.g., the Storegga slide, Norway,
w3000 km3, Haflidason et al., 2004), as well as large onshore mass
movements (Waitawhiti landslides, New Zealand, 111.106 m3,
Lacoste et al., 2009).

Besides, sliding along a detachment plane can be facilitated in
the case of the absence of force resisting shortening at the base of
the slope. Such a force can be decreased, and even entirely elimi-
nated, by downslope incision, therefore leading to landsliding.
However, the triggering of gravitational instability when the
downslope buttress is removed requires an incision that is deep
enough, cutting the cover all the way down to the mechanically
weak layers (e.g., swelling clays, Azañon et al., 2005; overpressured
shale, Lacoste et al., 2011).

Mourgues and Cobbold (2006) and Mourgues et al. (2009) have
conducted analogue sandbox modelling of sliding above over-
pressured shale, inwhich compressed air was applied at the base of
a low-permeability layer, therefore promoting sliding. In these
models having a downslope buttress, sliding can occur only if the
driving force can overcome the buttressing resisting force down-
slope, i.e., if the slide reaches a minimum required length
(Mourgues and Cobbold, 2006; Mourgues et al., 2009). These
authors observed that, in the presence of a resisting force at the
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base of the slope, the sliding mass comprised three distinct
domains: (1) an extensional domain upslope, (2) a non-deformed
slab at mid-slope and (3) a contractional domain downslope
(Fig. 1A). Mourgues and Cobbold (2006) also showed that the cover
deformation was greater (a greater number of normal faults and
thrusts initiated in the upslope and downslope parts of the model,
respectively) where the value of the basal slope angle was higher.
The downward displacement of the non-deformed slab also
increased with the basal slope angle increasing.

Lacoste et al. (2011) have investigated experimentally the
influence of the permanent removal of the downslope buttress
on the initiation, structure and evolution of such gravity-driven
instabilities. They showed that, in models subjected to constant
valley incision, gravitational collapse and normal faulting prop-
agated retrogressively from the valley flanks to the upslope
domain (Fig. 1B). The number of faults, as well as the area
affected by deformation, increased with increasing air pressure.
The deformed area also greatly increased with increasing basal
slopes.

In this article, we present, on the basis of the work by Mourgues
and Cobbold (2006), a 2-D analytical model of gravity sliding of
a sedimentary cover on a plane subjected to fluid overpressure. We
calculate the forces applied to the system and determine the
minimum slide length required for sliding to occur, under different
boundary conditions: (1) in the presence and (2) in the absence of
a downslope buttress.We also document two series of experimental
Fig. 1. Analogue sandbox modelling of sliding above an overpressured low-permeability la
a downslope buttress (Mourgues and Cobbold, 2006). Bottom: Schematic cross section. (B) S
incision (Lacoste et al., 2011). Bottom: Schematic cross section. Solid arrows indicate the se
models that we conducted to confirm our analytical predictions.
Finally, we discuss the discrepancies between analytical predictions
and experimental data to determinemore precisely the influence of
the absence and the presence of a downslope buttress on the
structural style.
2. Analytical expression of the sliding sheet length

To outline the morphological evolution of masses sliding above
a planar substratum subjected to pore-fluid overpressure, we built
a mechanical model based on the equilibrium of forces and
assumptions on the effective stresses.
2.1. Infinite slope model

It is first convenient to consider the simplistic case of an infinite
slope (Terzaghi, 1950; Hubbert and Rubey, 1959; Lambe and
Whitman, 1969; Crans et al., 1980; Mandl and Crans, 1981; Mello
and Pratson, 1999). The equation of equilibrium of total stresses
in the sediments subjected to gravity is:

Vs ¼ rbg (1)

where s is the total stress tensor, g is the gravity and rb the bulk
density. The presence of fluids in the porous medium implies that
a part of the total stresses is supported by the fluid phase. Terzaghi
yer. (A) Top: Overhead photograph (left) and line-drawing (right) of a model having
ide photographs of the initial (top) and last (centre) stages of a model with a downslope
nse of sliding. Dashed arrows show the sense of propagation of the deformation.
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(1923) defined the effective stress tensor s’ as the sole parameter
controlling the deformation of a porous media:

s0 ¼ s� Pf Id (2)

with Pf the pore pressure and Id the identity matrix. Expressed in
terms of effective stresses, Eq. (1) becomes:

Vs0 ¼ rbg � VPf ¼ rbg � rwg � VPov ¼ reg � VPov (3)

with rw the density of water. rwg is the hydrostatic part of the fluid
pressure gradient VPf. rwg acts on the solid matrix as a buoyancy
force (body force) equivalent to the Archimedes force (Dahlen,
1990; Mourgues and Cobbold, 2003). The effective weight of the
sediments then becomes the buoyant weight reg ¼ rbg � rwg. VPov
is the non-hydrostatic part of VPf, also called gradient of fluid
overpressure. This gradient induces a seepage force -VPov to the
system. This force is not inevitably vertical and therefore may
contribute to slope instability. With references axes (x, z) being
respectively parallel and perpendicular to the slope a, Eq. (3)
becomes:

vs0xx=vxþ vs0xz=vz ¼ regsin aþ vPov=vx (4a)

vs0xz=vxþ vs0zz=vz ¼ regcos aþ vPov=vz (4b)

In the infinite slope model, the assumption is made that the
slope is long enough so that longitudinal stress gradients are
negligible: vs’xx/vx¼ vs’xz/vx¼ 0. The gradient of fluid overpressure
is assumed to be perpendicular to the slope. Mandl and Crans
(1981) justified this approximation on the grounds that compac-
tion is invariant along the slope and that the principal axes of the
permeability tensor are approximately parallel and perpendicular
to the free surface. In such analysis, we define the generalized pore-
fluid overpressure ratio, modified from Hubbert and Rubey (1959):

l ¼ Pov=regzcos a (5)

with Pov the pore-fluid pressure at depth z, re the effective density
of the sliding cover (re ¼ rb � rw) and a the basal slope angle.

We consider in this study the case of a non-cohesive system.
Assuming that sediments obey a MohreCoulomb criterion of
deformation, gliding occurs when the shear stress on a plane
parallel to the slope reaches the yield stress, following the Coulomb
law:

s0xz ¼ s ¼ ms0zz (6)

with s the shear stress at yield, m the coefficient of internal friction.
On the upper surface of the sediments (z ¼ 0), s’xz ¼ 0. Combining
Eqs. (4)e(6) therefore leads to the condition required for sliding of
the cohesionless cover (Hubbert and Rubey, 1959):

tan a ¼ ð1� lÞtan f (7)

with 4 the angle of friction. It is here important to underline
that the hydrostatic pore pressure has no effect on the stability
Fig. 2. Stresses and forces applied in a buttressed model (A) and an incised model (B). Fw is
force, Fexts and Ftoes are the forces exerted by s0xx acting on the upper and lower edges of th
of a submarine slope. Indeed, under hydrostatic conditions, the
stability of a submarine slope is similar to that of a dry emerged
slope. In stratified sediments, the pressure gradient varies from
one layer to another in response to changes in permeability. We
will assume thereafter a sedimentary cover having a constant
coefficient of fluid pressure l and an angle of friction 4. At the
base of this cover, the coefficient of fluid pressure and the
coefficient of friction have specific values lb and mb, respectively
(Davis et al., 1983). For a detachment to occur at the base of the
cover:

mbð1� lbÞ � mð1� lÞ (8)

2.1.2. Length of a frontally confined sliding sheet
In the infinite slope model, stress gradient is not parallel to the

slope. As a consequence, as soon as condition (8) is satisfied, the
cover may slide. However, in natural systems, lateral variations of
pore pressure and mechanical parameters may induce a resistance
at the toe (Fig. 2A).

When a detachment appears, part of the weight of the cover is
transferred from the base to the toe. Sliding occurs when the
transferred weight reaches values high enough to overcome the
distal buttress resisting force and initiate thrust faults, i.e, when
the sliding mass reaches a certain length. Lambe and Whitman
(1969), Mandl (1988) and Mourgues and Cobbold (2006)
showed that the minimal length necessary for sliding to occur
can be determined by writing the balance between forces driving
downward motion of the sedimentary cover and forces resisting
this motion. Lambe and Whitman (1969) demonstrated that the
following force systems could be used when evaluating the
stability of a wedge:

- Total weight, boundary pore pressures and boundary effective
stresses,

- Buoyant weight, seepage force and boundary effective stresses.

These two approaches are strictly equivalent, and we chose to
use the latter in our study.

In the case of an infinite slope, the main driving force derives
from the slope-parallel component of the weight (hereafter
denoted as Fw) and the resisting force arises from frictional
resistance (Fb) along the sliding plane. When considering sliding
sheets having a finite length (Fig. 2A), additional forces must be
introduced: the resistance on the lower edge (Fstoe) and the result
of stresses on the upper edge (Fsext) (Terzaghi, 1959). The driving
force Fs

ext, generated by the thrust of the mass upslope the upper
edge of the sliding cover, and the resisting force Fs

toe, induced by
the presence of a downslope buttress, correspond to Rankine
active and passive states, respectively (Lambe and Whitman,
1969). When writing the balance of forces applied to
a buttressed system (see Appendix for further details), we obtain
the length L of the sliding sheet:
the driving force induced by the weight of the model, Fb is the basal frictional resisting
e system, respectively.
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L ¼ 2ð1� lÞm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FS2

p
H (9)
Fig. 3. Evolution of the sliding sheet length with respect to the coefficient of fluid
pressure (lb), in the presence (bold line) or in the absence (dashed line) of a downslope
buttress. The vertical asymptote corresponds to the infinite slope model.
ðtan a� ð1� lbÞmbÞcos f
with H the cover thickness and FS ¼ tan a=ðð1� lÞtan fÞ

2.1.3. Length of a sliding sheet where the distal buttress is absent
Where the downslope buttress has been removed by incision,

the basal detachment may intersect the bevelled surface (Fig. 2B).
In such system, Fstoe ¼ 0 and Fs ¼ Fs

ext. Considering a cohesionless
system, we obtain:

Fs ¼ Fexts ¼
Z
H

s0extxx dh ¼ 0:5ð1� lÞregH2ð2Y � 1Þcos a (10)

with Y ¼ ð1� sin f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FS2

p
Þ=cos2 f. Where the cover is cohesive,

a vertical cliff may form downslope, whereas a slope having
a negligible cohesion remains subjected to the critical taper
conditions (Dahlen, 1984). For convenience, we will assume the
wedge-like downslope part of the cover to have a stable surface
slope and to slide rigidly. In comparisonwith the buttressed model,
the seepage force in this case has an x-component that must be
added to the balance of forces. We obtain the sliding sheet length
by writing the balance of forces applied to a non-buttressed system
(see Appendix for details):

L ¼ 0:5
�ð1� lÞð2Y � 1Þ þ l

mbð1� lbÞ � tan a
� 1
tan b

�
H (11)
2.2. Analytical results

In this section, we describe the evolution of the sliding sheet
length at yield, depending on the boundary conditions. Mourgues
and Cobbold (2006) and Lacoste et al. (2011) showed that the
evolution of the deformation greatly differed depending on
whether or not a distal buttress was present (Fig. 1). To better
understand these differences, we plotted, for both cases, the
sliding sheet lengths versus the coefficient of fluid pressure lb
(Fig. 3).

Our model confirms the observation by Mourgues and Cobbold
(2006) and Mourgues et al. (2009) that a minimum length is
required for the driving forces (i.e., the weight of the cover) to
overcome the frictional and the downslope buttress resisting
forces. This length decreases with increasing lb, because of the
Fig. 4. Influence of the basal slope angle (a) and the cover thickness (H) on the evolution of
a downslope buttress.
decrease of the frictional force by fluid overpressure (Fig. 3). By
contrast, the predicted sliding sheet length increases with
increasing coefficient of fluid pressure (lb) in models having no
downslope resisting force (Fig. 3). In this case, the curve also has
a horizontal and a vertical asymptote (Fig. 3). The horizontal
asymptote shows that short instabilities may form even where the
value of lb is low. The vertical asymptote corresponds to values of lb
for which the sliding sheet may reach an infinite length. This case
corresponds to the infinite slope model (Mandl and Crans, 1981), in
which the entire cover is predicted to slide for a given value of lb.
This value can be determined either graphically or using Eq. (8).

We also determined the sliding sheet length evolution with
respect to lb for different values of the basal slope angle (a) and
cover thickness (H) (Fig. 4). The physical properties of the materials
we used are presented in Table 1. Where a buttress is present,
a greater slope (a) requires smaller values of the coefficient of fluid
pressure at the base (lb) to trigger sliding, thus facilitating mass
movement (Fig. 4A). On the contrary, where the cover is thicker, the
critical fluid pressure is greater. Increases in the slope angle
strongly reduces the value of lb required to trigger sliding (Fig. 4A),
whereas variations in cover thickness has only a minor influence
the sliding sheet length with respect to lb in the presence (A) and in the absence (B) of



Table 1
Physical properties of the materials used in this study. Bulk densities and angles of internal friction were determined after Schellart (2000), Panien et al. (2006) and Yamada
et al. (2006).

Material Grain size
(mm)

Bulk density
(kg m3)

Angle of internal
friction (�)

Coefficient of internal
friction m

Permeability
(Darcy)

Cohesion
(Pa)

Coarse sand (cover) 316 1600 34 0.67 100 0
Glass microbeads (décollement) 106 1600 24 0.44 6 0
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(Fig. 4A). On the other hand, in non-buttressed models, an increase
in the basal slope angle and/or in the cover thickness leads to
a decrease in the fluid pressure required to trigger sliding (Fig. 4B).

3. Experimental modelling

3.1. Experimental set-up and procedure

We used the experimental set-up built by Mourgues et al.
(2009). The models were constructed between two fixed lateral
glass walls, on top of a sieve at the base of which compressed air
was injected (Fig. 5A). The distribution of the air pressure in the
models varied with the pressure applied at the model’s base, and
the thickness and permeability of the layers (Fig. 5B). During the
experiments, the air pressure was monitored using a digital
manometer (precision� 0.1%). Ourmodels comprised a 3 cm coarse
sand (Table 1) substratum layer, overlain by a 0.5 mm low-
permeability layer of glass microbeads (Table 1) layer and
a coarse sand cover (Fig. 5A). Mourgues and Cobbold (2006)
showed that high permeability contrasts between the décolle-
ment and the cover promote gravity sliding. Coarse sand allowed
for rapid air flow, hence low air pressure, below and above the low-
permeability décollement layer. We considered the cohesion of the
sand and microbeads to be negligible (Table 1). Indeed, in the
moisture conditions of the laboratory (w40%), no vertical cliff could
form in these materials.

Models were 150 cm long, 60 cm large, and were built on a tilted
base, with or without a downslope initial incision (Fig. 5). In both
cases, we performed two series of experiments, corresponding to
cover thicknesses of 1 cm and 2 cm, respectively. Each series
comprised three experiments, corresponding to basal slopes
ranging between 2� and 4�.

We raised the air pressure at the base until sliding of the cover
occurred. For each sliding episode, we measured, on the basis of
overhead photographs, the length of the sliding sheet. In the
incised models, immediately after each sliding episode, we
removed the slid material, to prevent the formation of a downslope
buttress. In both buttressed and incised series of experiments, we
then raised the air pressure again. We repeated this operation until
Fig. 5. Experimental setup. A: Schematic cross-section view. B: Theoretical pressure profiles
that the fluid pressure approaches the lithostatic pressure at the base of the microbeads la
the whole model either deformed or exploded. The air pressure,
measured continuously through the experiments, allowed us to
calculate the value of the coefficient of fluid pressure lb for each
deformation episode. We measured the pressure at the top of the
homogenizing box. Nevertheless, pressure values at the base of the
low-permeability layer differ because of the loss in pressure head
due to the sudden flow expansion between the connecting pipes
and the basal injectors (Fig. 5). We measured this head loss
experimentally. Actual pressure values at the base of the model are
about 70% the pressure values measured at the top of the homog-
enizing box (Fig. 5). Potential air spread outside the model, espe-
cially in lateral areas, may also lead to misestimating the pressures.

3.2. Experimental limitations

The experimental procedure we followed faced two major
technical constraints.

(1) The friction along the sidewalls tends to resist sliding and,
because the forces driving deformation are small, can greatly
influence deformation and control the 3-D morphology of
faults and thrusts. Therefore, we built models that were wide
compared with their thickness and we measured the sliding
sheet lengths in the centre of our models, where the influence
of sidewall friction was minimal. Finally, in most models, we
inserted glass microbeads along the sidewalls to reduce the
effective stresses there, thus reducing lateral friction.

(2) Ideally, onemodel should correspond to one given value for the
fluid pressure, cover thickness, and length of the sliding mass.
Testing each parameter rapidlywould amount to several tens of
experiments, if not more. As construction and deformation of
each model took several days, we had to limit the total number
of experiments for logistical reasons and therefore, could not
undertake several tens of experiments. To compensate for this
limitation, we progressively varied the value of one parameter
(namely, the applied pore-fluid pressure) during the experi-
ment, assuming that this single experiment represented several
experiments conducted under different air-pressure values.
This approach worked very well with incised models. In these
within the model. a is the basal slope angle, Pfb is the applied basal fluid pressure. Note
yer.



Fig. 6. Structural evolution of the buttressed models, example of a model having a 2 cm-thick cover and a 3� basal slope angle. A: Line drawings of the evolution of deformation,
from the first stage (1) to the last stage (4) of deformation, with increasing lb. Numbers indicate the order of formation of the upslope normal faults and the related downslope
thrusts. B: Overhead photograph of the ultimate stage of deformation. C: 3-D view of the ultimate stage of a buttressed model. D: Cross section (up) and line drawing (bottom). See
(B) for location. The arrows indicate the sense of sliding.
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models, the analytical solution predicts amaximum value of the
slidmass length, and this value increaseswith increasing applied
fluidpressure. Thus, duringone single experiment, thefirst slide
was short (providing the critical value for the slid mass under
low fluid pressure conditions), then, as air pressure increased,
the slid length increased, indicating the critical value for the slid
mass for higher fluid pressure conditions (Lacoste et al., 2011).
Consequently, one single experiment could be regarded as
equivalent of a set of different experiments conducted under
different values of pore-fluid pressure. Such an analogy is less
straightforward when dealing with buttressed experiments,
where the analyticalmodel predicts aminimum critical lengthof
the slid mass (i.e., longer block could also slide) that decreases
with increasing fluid pressure (Mourgues et al., 2009).

Theoretically, testing this set up would need multiple models,
each one having a given cover thickness and slope value, and
a minimum area where the air pressure was applied, and check
whether sliding could occur. Then we would increase the area
subjected to air pressure until sliding occurred. Such a scheme
would have required hundreds of experiments. Instead, we ran
models whose entire base was subjected to air pressure from the
start, and progressively raised the air pressure as the model
evolved. For specific critical values for cover thickness, basal slope,
and fluid pressure, the model would deform. But if the length of the
area subjected to air pressure was greater than the critical
minimum value for sliding, the entire model was likely to slide. In
other words, model results did not provide us with the value of this
critical length, but a value that was e generally e greater than the
critical one. We worked around this caveat by progressively
increasing the air pressure in the model as it evolved. Typically,
a long panel of the cover slid during the first episode, forming an
array of normal faults updip and thrust faults downdip. Measuring
the shortest distance between the two deformation domains
provided the value for the length of the slid mass. With ongoing
deformation and increasing fluid pressure, thrusts propagated



Fig. 7. Experimental evolutions of the sliding sheet length with respect to lb in buttressed models.
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updip, while the extensional domain was passively translated
downdip: the length of the cover block translated rigidly decreased
until a point when the system became totally blocked, regardless of
the air pressure we applied. At that stage, the length of the slid
mass could be considered as the minimum critical length for
a given cover-thickness/fluid-pressure configuration. So, unlike the
non-buttressed experiments, each buttressed model could provide
only one critical value and could not be regarded as a substitute for
multiple experiments. Moreover, the evolution of buttressed
models also hindered the reliability of the procedure. During the
early stages, where the length of the slid mass was usually greater
than the critical length, thrusts and folds formed downdip, thick-
ening the cover and the décollement, and normal faults formed
updip where syntectonic sedimentation maintained the cover
thickness constant, but the décollement thickness decreased.
Overall, the conditions changed along the downslope and upslope



Fig. 8. Experimental evolutions of the sliding sheet length with respect to lb in incised models.
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boundaries of the system, and this change may have had some
influence on the result. These observations explain why the quan-
titative data collected on the buttressed models are a bit more
erratic in matching the solutions predicted by the analytical model.

3.3. Results

Each experiment was conducted twice to ensure that the results
were reproducible. We measured the average values of the sliding
sheet lengths, with respect to the coefficient of fluid pressure (lb)
calculated at the base of the low-permeability microbeads layer, for
cover thicknesses of 1 cm and 2 cm, and basal slope angles ranging
from 2� to 4�. We estimated the error in the determination of the
coefficient of fluid pressure to be �0.05. This estimation accounts
for the precision of the digital manometer and uncertainties in the
permeability values of the materials, which are difficult to evaluate
and can also vary depending on the way in which the different
layers were deposited. The models with basal slope angles lower
than 2� are not presented here because sand volcanoes formed and
the models eventually blew out before the experiments ended.

3.3.1. Buttressed models
As observed by Mourgues and Cobbold (2006) and Mourgues

et al. (2009), the slid mass comprised three domains (Fig. 6). An
extensional domain formed first on upper edges of the models. A
translated, non-deformed slab has been observed at mid-slope.
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Contractional structures developed on lower edges (Fig. 6A1) and,
with air pressure increasing, propagated updip (Fig. 6A2e3). When
the air pressure reached large values, such as models having a 2 cm
cover thickness and a 3� basal slope angle, lb ¼ 0.97, the model slid
as awhole (Fig. 6A4). This deformation stage reused the first formed
thrust. Thickening of the downslope contractional toe eventually
blocked deformation propagation. With increasing air pressure,
sand volcanoes formed (Fig. 6B and C). These volcanoes appeared
first on or near normal faults, where faulting had thinned the cover,
thereby decreasing the lithostatic pressure and increasing the
coefficient of fluid pressure.

In the buttressed models, the sliding sheet lengths decreased
with increasing lb (Fig. 7). The sliding sheet length increase where
the coefficient of fluid pressure reached values close to lb ¼ 1
(Fig. 7) was due to changes in boundary conditions caused by the
formation of successive thrusts and the thickening of the lower
edge of the models (see Section 5.2).

3.3.2. Incised models
The sliding sheet lengths in incised models increased with lb

increasing (Fig. 8). We observed a threshold in lb, above which the
length of the sliding sheet greatly increased. This threshold was
better expressed in the models having the thinner cover
(thickness ¼ 1 cm) than in the models having a 2 cm-thick cover. In
the latter case, sliding sheet lengths evolved exponentially, without
clearly defining any threshold. As in the theoretical predictions
(Fig. 4B), an increase in cover thickness and/or in the basal slope
angle reduced the value of the coefficient of fluid pressure required
for the cover to slide (Fig. 8). For example, in the case of a 1 cm-thick
cover, in order for the slide to reach a length of 30 cm, lb must be
equal to 0.97 where the system is tilted by 2�, 0.88 where it is tilted
by 3�, and 0.78 where it is tilted by 4� (Fig. 8).

4. Discussion

4.1. Sliding processes in models subjected to fluid overpressure

Numerous experiments have emphasized the role of pore-fluid
pressure in the triggering of mass movements (e.g., Wang and
Sassa, 2003; Mourgues et al., 2009; Lacoste et al., 2011). However,
an important distinction should be made between the influence of
fluid overpressure in the cover and along the base of the cover,
respectively. On one hand, slope instability arises fromwater flows
(Ghiassian and Ghareh, 2008) and saturation of the potentially
mobile cover (Wang and Sassa, 2003). In that case, sliding takes
place on or near the top of the basal detachment layer (e.g., swelling
clays, Shuzui, 2001). On the other hand, the critical decrease in the
effective stress along the base of an overpressured layer allows for
sliding of the overlying cover to occur, regardless of the fluid
saturation of this cover.

Our results confirm that, in models having a downslope
buttress, the sliding sheet length decreases with the basal pore-
fluid pressure increasing, as observed by Mourgues and Cobbold
(2006) and Mourgues et al. (2009). In these models, the contrac-
tional structures form first in the downslope part and propagate
updip. This stacking mechanism is similar to that described in
experimental salt-detached gravity-driven thrusts belts by Dooley
et al. (2007). In contrast, in models subjected to downslope inci-
sion, the sliding sheet length increases with increasing pore-fluid
pressure.

The presence of a downslope resisting force prevents the
formation of slope instability below a threshold of the coefficient of
fluid pressure (lb) (Figs. 3 and 7), for which the value of the fric-
tional resisting force at the base of the cover decreases enough to
allow for sliding to occur. In buttressed models where the value of
lbwas smaller, the driving forces induced by theweight of the cover
and/or the basal slope had to reach sufficient values to overcome
the buttressing resistance (Fig. 7). An increase in cover thickness,
basal slope angle and/or coefficient of fluid pressure causes
a decrease in the sliding sheet length, i.e., the distance between the
upslope normal fault and the downslope thrust (Fig. 6; Mourgues
and Cobbold, 2006).

In incisedmodels subjected to fluid overpressure, combined low
basal resistance related to fluid overpressure and the lack of
downslope buttress critically reduce the forces resisting sliding and
trigger deformation, evenwhere the driving forces are moderate. In
such a case, slope instabilities can form even at small lb values
(Figs. 4B and 8). The driving forces Fw and Fs do not depend on the
coefficient of fluid pressure. Therefore, with lb increasing, the
sliding sheet lengths increases (Fig. 8), because of the progressive
decrease in the value of the frictional force Fb. In the absence of
distal buttress, the deformation thus propagates retrogressively
from the valley flanks upslope (Lacoste et al., 2011). To limit the
total number of experiments, we decided to raise the air pressure
progressively. Nonetheless, with the coefficient of fluid pressure
remaining constant, an increase in the basal slope (i.e., the driving
forces Fw and Fs) would have yielded similar results.

The mechanical behaviour of the material during the deforma-
tion phases may also affect the geometry and kinematics of the
sliding masses. Early studies showed that deformation had a strong
influence on the mechanical properties of natural rocks (Byerlee,
1978; Paterson, 1978). Following these observations, Lohrmann
et al. (2003) demonstrated that granular analogue materials were
subjected to strain hardening prior to failure and subsequent strain
softening. This transition from peak strength to residual strength
during deformation could account for the structural evolution of
the slides. However, Schreurs et al. (2006) showed that the glass
microbeads used in our experiments (Table 1) are subjected to<9%
strain softening, which represents a change between peak and
residual angle of internal friction <2�. This effect is therefore
negligible in comparison with the influence of increasing air pres-
sure on the reduction of the basal frictional resisting force.

4.2. Comparison between experimental and analytical models

The experimental results are in good agreement with the
theoretical predictions of the analytical model. The predicted
evolutions of the sliding sheet lengths are depicted in the models
by the propagation of the extensional and contractional domains. In
models having a downslope buttress, we observed an exponential
decrease in the sliding sheet length with increasing lb, except in the
experimental model having a 2 cm-cover thickness and a 2�-basal
slope angle (not presented in this article), in which this decrease
was moderate. In the latter model, strong lateral friction combined
with weak driving forces hampered sliding. In models subjected to
incision, the sliding sheet length increased exponentially with
increasing lb. We also observed that the coefficient of fluid pressure
required for the cover to slide decreased with the basal slope angle
and/or the cover thickness increasing (Figs. 4B and 8). An increase
in the cover thickness also decreases the concavity of the curve
(Fig. 4B). In the analogue models, the sliding lengths evolutions in
models having a 2 cm-thick cover effectively tend to bemore linear.

However, despite the general agreement between the analytical
and experimental curves, several differences require further
discussion. No vertical asymptote, corresponding to the infinite-
slope model case (Crans et al., 1980; Mello and Pratson, 1999),
was observed in our analogue models. Indeed, the evolution of
deformation in the experiments led to different stress states than
the initial boundary conditions, for which the analytical curves
were drawn. In the buttressed models case, the calculated sliding



Fig. A1. Stresses and forces applied in our model. Fw is the driving force induced by the
weight of the model, Fb is the basal frictional resisting force, Fexts and Ftoes are the forces
exerted by s0xx acting on the upper and lower edges of the system, respectively.
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length is a minimum length. In the experiments, the slides may
have a length greater than that minimum value (Fig. 6A4). The
progressive thickening of the cover increased the resisting force at
the base of the slope, which favoured the updip propagation of the
deformation during the first episodes of sliding. However, in late
stages (Fig. 6A4), the buttressing force reached a critical value and
prevented the formation of new structures, therefore leading to the
resumption of motion along former thrusts. As a consequence, in
buttressed models, the measured sheet length is not always the
minimum sliding length (see Section 4.2). This difference could
account for discrepancies between the analytical and analogue
models.

In the incised models case, the thinning of the cover and the
important amount of strain at the base of the slope at the end of
experiments hampered sliding of infinitely-long sheets, as pre-
dicted by the analytical calculations (infinite slope model, Crans
et al., 1980; Mello and Pratson, 1999). Moreover, in these experi-
ments, we simulated river incision by vacuuming the downslope
part of the cover. The valley flank slope was controlled by the angle
of repose of the cohesionless sand (34�, Table 1). In practice, the
downslope wedge-like geometry of the cover generated a resisting
force. As weak a force as this might be, it turned out to be great
enough to prevent thewhole cover from sliding. In the experiments
with incision that involved a 2 cm-thick cover, the sharp increase in
the sliding-sheet length with increasing lb was not clearly visible,
except for the 3�-basal slope angle model (Fig. 8). Because the
resisting force induced by the wedge increases with increasing
cover thickness, it therefore opposes sliding in the models having
a thick cover (i.e., 2 cm), even where the frictional basal force (Fb)
had been reduced by the effect of fluid overpressure.

Lateral friction along the sidewalls may also have a strong
influence on sliding evolution by adding a supplementary resisting
force. Because the driving forces as compared with forces gener-
ated by the sedimentary cover thickness and the basal slope angle,
as well as the shear frictional resisting force at the base of the
cover, are small, lateral frictional forces can become proportionally
quite important, and control the evolution of deformation of
analogue models subjected to fluid overpressure (Costa and
Vendeville, 2004; Schreurs et al., 2006; Vendeville, 2007). There-
fore, to overcome the resulting force resisting sliding, the driving
forces (the basal slope angle and/or the cover thickness) must be
increased.

The evolution of the sliding sheet length with respect to lb also
depends on the values of the décollement layer and cover cohesion.
High cohesion values hamper sliding. In our analytical calculations
(Fig. 4), we assumed that our sands were dry and had no cohesion.
However, air-moisture in the laboratory may have raised the sand’s
cohesion to non-negligible levels. The materials (sand and glass
microbeads) that we used in these models could then have had
a cohesion greater than previously expected when the experiments
were performed, which would lead to greater resistance to sliding.
Further experiments involving cohesive materials would be
required to confirm this hypothesis.

5. Conclusions

We developed a 2-D analytical model that investigated the
influence of incision and the removal of downslope buttress on
the structural evolution of a cover sliding on a low-permeability
layer subjected to fluid overpressure. We also conducted
analogue experiments that helped us better understand the style
and evolution of deformation determined with the analytical
calculations. Model results show that sliding deformation
processes greatly differ depending on whether a distal buttress is
present or not:
- In models having a downslope buttress, the sliding sheet
length decreases with the coefficient of fluid pressure (lb)
applied at the base of the model increasing.

- In models subjected to downslope incision, the sliding sheet
length increases with lb increasing. Slope instabilities may
form even in the case when values of lb are low.

- In both buttressed and incised models, the value of lb required
for the cover to slide decreases when the basal slope angle and/
or the cover thickness increase (albeit with less impact than the
slope angle).

- Deformation in incised models is controlled by extensional
structures spreading retrogressively from the valley flank
upslope. In buttressed models, deformation is mostly accom-
modated by contractional structures forming on the lower
edges of the models. These structures migrate updip as the
basal pore-fluid pressure is increasing.
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Appendix

A.1. Balance of forces in a frontally confined system

On a segment of a cohesionless system defined between an
extensional part upslope and a thrust front downslope (Fig. A1), the
balance of forces along the x-axis can be written as:

Fw þ Fs þ Fb ¼ 0 (a1)

where Fw is the x-component of a gravitational body force
expressed with the buoyant weight:

Fw ¼ regHLsin a (a2)

with L, the length of the sliding sheet and H its thickness. Fb is the
surface force exerted at the base and governed by the frictional
sliding condition (6). Assuming no lateral variation of frictional
resistance along the décollement, we can write:

Fb ¼
Z
L

sbdx ¼ �mbs
0
zz ¼ �mbð1� lbÞregHLcos a (a3)

Fs is the net force exerted by s0xx acting on the upper and lower
edges of the system (Fig. A1):

Fs ¼ Fexts � Ftoes ¼
Z
H

s0extxx bdh�
Z
H

s0toexx bdh (a4)
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When the system starts sliding, normal faults form at the upper
edge and thrust faults appear at the lower edge, as postulated by
Nye (1952) in the case of glacier deformation. s0xx in both edges may
thus be calculated at yield. In the extensional part, Mandl and Crans
(1981) calculated that the dips of the normal faults depend on the
amount of fluid overpressure in the cover. Mourgues and Cobbold
(2003) used sandbox experiments to verify these predictions and
noted that the orientation of the main principal stress was influ-
enced by the seepage force, a force assumed to be perpendicular to
the slope. They also showed that the dips of the normal faults could
be described by using expressions of s0xz and s0zz deduced from the
infinite slope model:

s0xz ¼ regzsin a (a5)

s0zz ¼ ð1� lÞregzcos a (a5.1)
Fig. A2. Mohr’s circle representation of the values of s0xx in the upslope part (s0extxx ,
extension) and downslope part (s0toexx , compression) of the model.
We used this hypothesis to estimate s0xx in the extensional
trailing edge ðs0extxx Þ and in the contractional leading edge ðs0toexx Þ. The
associated extensional and contractional states of stress correspond
to Rankine active and passive states, respectively (Lambe and
Whitman, 1969). Fig. A2 shows the Mohr circle for this state of
stresses, according to hypotheses (a5) and (a5.1), assuming no
cohesion. From simple geometrical considerations (Fig. A2), we can
write:

r ¼ s0sin f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0xz2þ ��

s0xx þ s0zz
��

2
�2q

(a6)

s0 ¼ �
s0xx þ s0zz

��
2 (a7)

Combining Eqs. (a5.1)e(a7), we find:

s0xx ¼ s0zzð2Y � 1Þ (a8)

with Y ¼ ð1� sin f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FS2

p
Þ=cos2 f. FS can be considered as

a factor of safety evaluating the internal stability of the cohesionless
cover:

FS ¼ tan a=ðð1� lÞtan fÞ (a9)

The sedimentary cover becomes instable for FS � 1. Fs can be
evaluated from Eq. (a4):

Fs ¼ �2ð1� lÞmrgH2cos a
cos f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FS2

p
(a10)

The length of the sliding sheet can then be calculated:
L ¼ 2ð1� lÞm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FS2

p
H (a11)
ðtan a� ð1� lbÞmbÞcos f

The negative value of Fs in Eq. (a10) shows this force acts as
a resisting force. Therefore, sliding only occurs if the condition
(1� lb)mb� tan a is satisfied. Where (1� lb)mb¼ tan a, L reaches an
infinite length. This limit corresponds to the infinite slope model
and is satisfied for Fs ¼ 0. Beyond this limit, as the pore fluid
pressure lb increases, the length of the sliding sheet allowed to
glide decreases.
A.2. Length of a sliding sheet where the distal buttress is absent

In comparison with the buttressed model, the seepage force
now has an x-component that must be added to the balance of
forces. Eq. (a1) then becomes:

Fw þ Fs þ Fb þ FSF ¼ 0 (a12)

FSF is the x-component of the seepage force:

FSF ¼ �
Z Z Z

V

V
/

Povdv ¼ �
Z Z

S

Pov dS
�! ¼

Z
H

Povdh

¼ 0:5lregH
2cos a (a13)

Fw can then be expressed as:

Fw ¼ regHLsin aþ 0:5regH
2Lsin a=tan b (a14)

where b is the angle of the downslopewedge and L the length of the
slide. Assuming that s0zz may be estimated by Eq. (a5) along the
detachment, the basal frictional force Fb becomes:

Fb ¼ �mbð1� lbÞregHcos aðLþ 0:5H=tan bÞ (a15)

Combining Eqs. a12ea15, length L is given by:

L ¼ 0:5
�ð1� lÞð2Y � 1Þ þ l

mbð1� lbÞ � tan a
� 1
tan b

�
H (a16)

Unlike in the buttressed model case, sliding here occurs even if
(1 � lb)mb � tan a is not satisfied yet. Indeed, in incised models, Fs
becomes a driving force (Fs > 0) and a seepage force is added. L
increases with lb. In other terms, deformation starts close to the
downslope wedge and spreads retrogressively.

If the cover is cohesive, Eq. (a8) is modified as s0extxx and z are not
linearly dependent. The expression of Fexts becomes more complex
and must be numerically integrated. Close to the surface, s0xx
becomes negative (Fig. A2). If cohesion is high enough, Fs may even
transform into a resisting force (Fs < 0). In such a case, and for
Fs þ FSF < 0, sliding is only triggered for (1 � lb)mb � tan a. This
behaviour is similar to the behaviour of the buttressed model,
where sliding starts with an infinite length.
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