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This work aimed to evaluate whether different types of landscape structures (undulations, lynchets and
undisturbed surfaces) can be discriminated by their morphometric attributes and the soil thickness.
Three models based on the factorial discriminant analysis (FDA), the multinomial logistic regression
(MLR) and the classification and regression trees (CART), respectively, were developed to classify different
types of landscape structures. All these statistical techniques were performed using a training sample of
586 individuals over a 17 ha area located in the south-western Parisian Basin. The models developed by
the CART and FDA revealed that in addition to soil thickness, the morphometric attributes slope and profile
curvature significantly influence the spatial distribution of landscape structures. In addition to the variables
selected by CART and FDA models, MLR model included elevation. An external validation of the classifica-
tion models based on a validation sample of 148 individuals, revealed an overall well classification by
CART model of 85% while those achieved with MLR and FDA models were 72% and 77%, respectively. As
the predictor variables are known at all the nodes of a regular grid covering the study area; the three models
developed were then used to map the landscape structures all over the 17 ha area. Resulting maps revealed
a total disagreement between the three models for only 3% of the study area. For more than 50% of the study
area the three models predicted a similar landscape structure. For the remaining surface, at least two of the
three models predicted a similar landscape structure.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

One of the traditional tasks in soil survey is the allocation of
individual sites in predefined classes of the existing systems of
classification. To deal with this problem, surveyors have often developed
classification approaches using a combination of experience and intuitive
judgments to assign individual sites in predefined classes. However, it is
generally difficult for soil surveyors to communicate precisely how they
do it. Thus these classification approaches are difficult to be reproduced
by users. In order to rationalize expertise of soil surveyors, different
quantitative methods have been applied over time to study the spatial
distribution of soils and their properties.

Among these methods, factorial discriminant analysis (FDA)
was used very early and continues to be widely used in soil science
(e.g. Anderson et al., 2009; Cox and Martin, 1937; Fernández-
Getino et al., 2010; Hirmas et al., 2011; Jungmann et al., 2011;
Taylor et al., 2009; Varol et al., 2012; Webster and Burrough,
cherche Agronomique (INRA),
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1974) to attempt to solve assignment problem of soil profiles, soil
horizons, etc. to different classes a priori defined.

The multinomial logistic regression (MLR) can also be used to deal
with such problem. Indeed, this method was widely used for spatial
modeling in land use and ecology studies as well as for digital soil
mapping (e.g. Akgün and Türk, 2011; Bailey et al., 2003; Campling
et al., 2002; Debella-Gilo and Etzelmüller, 2009; Hengl et al., 2007;
Kempen et al., 2009; King et al., 1999; Marchetti et al., 2011; May
et al., 2008; Müller and Zeller, 2002; Rhemtulla et al., 2007; Suring
et al., 2008; Venkataraman and Uddameri, 2012).

The classification and regression trees (CART), introduced by
Breiman et al. (1984), have also some potential to handle with the
assignment problem of an individual such as soil profiles and soil
horizons to different classes a priori defined. Algorithms of CART are
non-parametric; so, no hypothesis is required regarding variable
distribution (Friedman, 1991; Mitchie et al., 1994). In addition, several
studies have shown that one of the most widely used and best
performing inductive learning algorithms in terms of generating
interpretable rules as well as prediction accuracy was classification
tree algorithm (e.g. Behrens and Scholten, 2006; Loh andVanichsetakul,
1988). These algorithms were also described as a robust prediction
technique (e.g. Lagacherie et al., 2001; Scull et al., 2005). Applications
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in environmental sciences can thus be found in various disciplines like
ecology, remote sensing and soil science (e.g. Bater and Coops, 2009;
Friedl and Brodley, 1997; Geissen et al., 2007; Hansen et al., 1996;
Ließ et al., 2012; Mulder et al., 2011; Munoz and Felicisimo, 2004;
Schmidt et al., 2008; Viscarra Rossel and Behrens, 2010).

The objective of this study was to compare three multivariate
methods in the development of classification models for landscape
structures and to elucidate the choices of multivariate techniques.
For this purpose, we proposed to assess whether different types of
anthropogenic landforms could be discriminated by their morphomet-
ric attributes and the soil thickness. To deal with this objective, accurate
elevationmeasurements and a dense soil thickness surveywere carried
out over 17 ha in the center of France. Calibration and validation of the
models were conducted from two sets of punctual measurements
carried out in the study area. Finally, this paper examines the ability of
the most powerful model, in regard to the validation results, to map
the different types of anthropogenic landforms over the whole study
area.

2. Materials and methods

2.1. Location of the study area and data acquisition

The study site and the data acquisition (Fig. 1) were widely present-
ed in the paper by Chartin et al. (2011). We recall here the main points
about these two aspects to help the readers of this work. The study site
was carried out on a 17 ha southeast-facing hillslope located near the
village of Seuilly (south-western Parisian Basin, 47°08.31′N, 0°10.97′
E). The main soils observed in the study area are calcaric Cambisols,
epileptic calcaric Cambisols and colluvic Cambisols (Bellemlih, 1999;
Boutin et al., 1990; FAO, 1998).

The landscape is composed of three types of morphological
elements. Two types correspond to anthropogenic linear landforms,
lynchets and undulations, located along former field borders, removed
during previous campaigns of land consolidation, and along present
field borders, respectively (Chartin et al., 2011; Houben, 2008). The geo-
metrical characteristics (shape and size) of both lynchets and undula-
tions are different and widely presented in the paper by Chartin et al.
(2011). In addition, they are distinguishable infield from “undisturbed
surfaces”, i.e., areaswhichmorphologywas not affected by the presence
of any present or former field borders.

Soil thickness was measured by manual augering at 734 locations
(Fig. 1b) by considering the spatial distribution of considered linear
landforms and undisturbed areas. Twenty percent of the observations
(148 points) were randomly selected to constitute the validation set.
The remaining 80% of the dataset (586 points) was used as the training
set of the model.

A topographical survey was performed using two DGPS (Trimble ®
ProXRS) as a base and a mobile recorder, respectively. Coordinates
and elevations of 1550 points were obtained by post-treatment of the
data and used to estimate a Digital Elevation Model (DEM) on a two-
meter grid. Topographic attributes such as slope gradient (Slope),
curvature (Curve), planform and profile curvatures (Planc and Profc)
were derived (Fig. 2) from the DEM through the algorithms implement-
ed in the GIS ArcGis 9.3.1.

Finally, each point of the soil sampling scheme (Fig. 1b) was
informed about values of soil thickness and topographic attributes,
and assigned to one of the three categories of landscape structures
(lynchets ‘LY’, undulations ‘UN’ or undisturbed surface ‘US’) on the
basis of its geographic coordinates.

2.2. Principles of factorial discriminant analysis (FDA)

This section is devoted to a brief presentation of FDA used to
establish the classification model of landscape structures on the study
area. For a detailed presentation, the reader can refer to books on the
subject, such as Tabachnick and Fidell (1996) and Tomassone et al.
(1988).

FDA is a statisticalmethod for describing and forecasting. Its purpose
is to study the relationship between a qualitative variable and a set of
quantitative variables. Three main objectives can be assigned to the
discriminant analysis:

1. determine the variables most discriminating with regard to specific
category,

2. determine the category of an individual based on its characteristics,
3. validate a classification or make a choice between several classifica-

tions to determine which is most relevant.

The discriminant analysis comes at a posteriori classification. The
FDA can be considered as an extension of the problem of regression
where the dependent variable is qualitative. The data consist of n obser-
vations divided into k classes or categories and described by p variables.
Traditionally, one can distinguish two aspects in discriminant analysis:

1. a descriptive aspect which consists in finding linear combinations of
variables that separate in the best way the k categories and gives a
graphic representation that well reflects this separation,

2. a decisional aspect where a new individual arises and for which we
know the values of the predictors, it is then to decide in which
category it should affect it. In such cases, this is a classification
problem.

Twomodels of FDA are possible based on a fundamental assumption:
if we assume that the covariancematrices are identical, one is in the case
of linear factorial discriminant analysis. Assuming that the covariance
matrices are different for at least two categories, we are then in the
case of a quadraticmodel. The test of Box allows checking this hypothesis
(Bartlett's approximation allows the use of a chi-square law for the test).

2.3. Multinomial logistic regression (MLR)

Multinomial logistic regression is the extension for the binary
logistic regression when the categorical dependent outcome has
more than two levels.

The goal of multinomial logistic regression is to estimate the
probability of each class using a same set of influencing variables.
The model is similar to the binomial logistic regression in the sense
that the logarithm of the odds ratio is assumed to be a linear function
of the influencing variables. However, one of the classes is taken as
the baseline and odds ratios are developed for all other classes with
respect to this baseline. For a thorough presentation, the reader can
refer to Agresti (2002) or Hosmer and Lemeshow (2000). Nonetheless,
a brief presentation is given below concerning the binomial logistic
model and its generalization to the multinomial case.

In the binomial logistic regression, the probability (p1) that an
object belongs to group 1, and the probability (p2) that it belongs
to group 2, according to a set of predictor variables, are given by
the logit link function:

logit p1ð Þ ¼ Ln p1=p2ð Þ ¼ Ln p1=1−p1ð Þ ¼ xβ ð1Þ

where x is a vector of predictor variables, and β is a vector of model
coefficients that are usually estimated by maximum likelihood.

The expression (Eq. (1)) can be rewritten as:

p1
1−p1

¼ exp ηð Þ: ð2Þ

The left term in Eq. (2) is called the odds ratio. From expression (2) it
follows that:

p1 ¼ exp ηð Þ
1þ exp ηð Þ : ð3Þ



Fig. 1. (a) Localization of the study site; (b) sampling pattern of the training set and the validation set.
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The binomial logistic regression model can be generalized to the
multinomial case where the number of logistic functions is one less
than the number of groups. For example if there are three groups, one
of the groups is taken to be a reference group (say group 0), so that
the first logistic function can be used to predict the probability that an
objectwill belong to group 1 rather than group0, and the second logistic
function can be used to predict the probability that an objectwill belong
to group 2 rather than group 0.

The significance of the logistic regressionmodel is assessed with the
likelihood ratio test (G statistic). This test is used to determine the im-
provement of the full model over the intercept-only model (Hosmer
and Lemeshow, 2000). According to the same authors, the significance
of an individual model coefficient is assessed with the Wald statistic
(W), which is obtained by comparing the estimated coefficient to an es-
timate of its standard error.
2.4. Classification and regression trees (CART)

A classification tree is used to predict the group membership of ob-
jects on the basis of one or more predictor variables. The tree consists
of a set of decision rules, applied in a sequential manner, until each ob-
ject has been assigned to a specific group. The first decision rule, applied
at the ‘root node’ of the tree to the values of all objects alongoneormore
predictor variables, has two possible outcomes: objects are either sent
to a terminal node (leaf), which assigns a class, or to an intermediate
node, which applies another decision rule. Ultimately, all objects are
sent to a terminal node and assigned a class. In the simplest type of clas-
sification tree, the splits are binary (each parent node is attached to two
daughter nodes) and the decision rules are univariate (based on a single
variable). Classification tree can be based on continuous or discrete pre-
dictor variables, or on a mixture of both (when univariate splits are
used), and the trees are generally constructed by recursive partitioning
(i.e. a given predictor variable can be used in more than one decision
rule).

One commonly used algorithm for constructing classification tree
is classification and regression trees (CART), developed by Breiman
et al. (1984). CART find optimal univariate splits by carrying out an
exhaustive search of all possible splits. CART are non-parametric
classifiers: no assumptions are made about the distributions of the
variables.
3. Results and discussion

3.1. Descriptive statistics on the training sample and spatialization of soil
thickness

The training sample includes 586 individuals. These individuals
were assigned to three distinct categories of landscape structures.
Thus, 319 individuals were assigned to category US representing undis-
turbed surfaces, 167 individuals in category UN representing the undu-
lations and 100 collected on the lynchets were assigned to LY category.
In addition, each individual in the training sample was informed of the
thickness of the soil (ST) and five morphometric attributes: altitude
(Elv), the intensity of the slope (Slope), curvature (Curve), and plan
and profile curvatures (Planc and Profc) derived from the DEM by
using the algorithms implemented in the GIS ArcGis 9.3.1.

The variable to be predicted is a categorical variable to three terms.
This prediction is made from six quantitative variables observed on a
training sample of 586 individuals. From this training sample, classifica-
tion models of landscape structures were developed by applying FDA,
MLR and CART which were presented in the previous section.

Table 1 shows not only significant differences between the averages
of variables of the three categories, but also values significantly different
for standard deviations.

The Wilks's Lambda test allowed assessing whether the vectors of
averages for the various categories are equal or not. Results of this test
(Table 2) showed that at least one of the mean vectors was different
from another since the calculated p-value was inferior to the signifi-
cance levelα = 0.05. However, the box plots (not shown) of the distri-
bution of variables within each category and their comparisons showed
that a number of recoveries can take place between the three categories
for some of the measured variables.

Prior to map the anthropogenic landforms using the different
models developed, ST was mapped (Fig. 3a) by ordinary kriging on a
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2 m regular grid over the whole study area. The spatial autocorrelation
of ST (Fig. 3b), quantified through the semivariogram, was quite strong.
This experimental semivariogramwas fitted by a nestedmodel. The lat-
ter consists of a nugget model plus a spherical model. In an attempt to
validate the variogrammodel, cross validation was used on the original
data. Every known point was estimated by using a neighborhood
around it, but not itself. Having made such calculations, the results
using a moving neighborhood are revealing. They show that the mean
error was close to zero (0.002), and the ratio of the mean squared
error to the kriging variance (the variance ratio) was close to 1
Fig. 2. (a) Slope gradient; (b) curvature; (c) plan curvature; (d) p
(1.005). Thus, using the fitted variogram functions and the kriging
equation system, ST was estimated (Fig. 3a) over the study area from
the 586 punctual measurements of ST.

3.2. Mapping of anthropogenic landforms using the factorial discriminant
analysis model

Two models of FDA are possible based on a fundamental assump-
tion. If we assume that the covariance matrices are identical, we should
deal with linear factorial discriminant analysis. On the contrary, if we
rofile curvature, all derived from a Digital Elevation Model.



Table 1
Basic statistics of six quantitative descriptors of the qualitative variable: statistics by
category.

Category Variable Unit Mean Std

LY: Lynchet
(N1 = 100)

ST m 1.05 0.33
Elv m 59.04 12.83
Curve m−1 −0.20 0.22
Planc m−1 −0.01 0.12
Profc m−1 0.19 0.21
Slope % 1.49 1.19

UN: Undulation
(N2 = 167)

ST m 0.61 0.19
Elv m 56.96 6.36
Curve m−1 0.05 0.11
Planc m−1 0.01 0.05
Profc m−1 −0.05 0.10
Slope % 3.14 1.25

US: Undisturbed
surface (N0 = 319)

ST m 0.45 0.18
Elv m 57.95 11.59
Curve m−1 −0.02 0.17
Planc m−1 0.01 0.06
Profc m−1 0.02 0.15
Slope % 3.44 1.40

Table 3
FDA: test of Box (chi-square asymptotic approximation).

−2Log(M) 272.172
Chi2 (observed value) 269.584
Chi2 (critical value) 21.026
df 12
p-Value b0.0001
α 0.05
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assume that the covariance matrices are different for at least two
groups, we should deal with a quadratic model. The Box test can assess
this hypothesis (Bartlett's approximation allows the use of a chi-square
law for the test). The results of this test presented in Table 3 confirm
that we cannot make the assumption of equal variance–covariance ma-
trices between the three categories.

FDA (backward stepwise) revealed that the most discriminant vari-
ables for the three categories were ST, Slope, and Profc. Table 4 shows
the standardized coefficients of canonical discriminant functions.
These coefficients allow measuring the relative contribution of the ini-
tial variables to discrimination for a given category. For thefirst discrim-
inant function the intensity of the slope is opposed to the other
discriminant variables. The contribution of ST and Profc was greater
with respect to that of the Slope in the first discriminant function. For
the second discriminant function, the contribution of the Profc was
greater andwas opposed to the contributions of the two other variables.
Coefficients of ranking functions (Table 5) can be used to directly deter-
mine which category must be assigned an observation based on the
values taken for the various explanatory variables. An observation is
assigned to the category for which the ranking function is highest.

The results of classification (Table 6a) show an overall percentage of
well-classification in the order of 77%. In other words, the apparent
error rate on the training sample is 23%. This error rate is mainly due
to the US category and to a lesser degree to the UN category.

However, the same sample (training sample)was used to determine
the coefficients of ranking functions and to evaluate the success of the
assignment rules. This approach can still give an overly optimistic
picture.

The ideal is to perform an external validation. This procedure has the
advantage of providing unbiased estimates of the percentages of well-
sorted and poorly-sorted. It consists of estimating the coefficients of
discriminant functions on a training sample whereas the allocation
rule and calculating the percentage of well classified are performed
from another sample set (validation sample).
Table 2
FDA: test of Wilks's Lambda (Rao approximation).

Lambda 0.379
F (observed value) 120.984
F (critical value) 2.106
df1 6
df2 1162
p-Value b0.0001
α 0.05
In the absence of an external validation sample, it is essential to
achieve at least a systematic cross-validation. This operation consists
in excluding systematically the individual from the training sample
that one wants to classify. The calculation of posterior probabilities
used in the allocation rule is not based on the value of the generalized
distances of the centroids of individual groups; this procedure does
not require to run N discriminant analyzes but to adjust the calculation
of distances of Mahalanobis. In our study, systematic cross-validation
(Table 6b) leads to the same results with the training sample
(Table 6a) but this is not always the case.

Finally, the results of external validation (Table 6c) go along the
same lines as those of the confusionmatrix based on the training sample
and the confusionmatrix of systematic cross-validation (Table 6a andb)
namely that the risk of confusion between individuals of categories US
and UN is higher in contrast to the LY category where all the results
show that it is easier to discriminate them from other categories (the
undulations and undisturbed areas) based on soil and morphometric
criteria measured.

As a sequel, the coefficients of ranking functions presented in Table 5
are applied to the pixels of slope and Profc presented in Fig. 2 as well as
for all pixels of ST (Fig. 3a). Thus for each category (LY, UN, US) we
obtain a grid and then each pixel of the study area is assigned to the cat-
egory forwhich the ranking function is highest.We obtain thus (Fig. 4a)
the spatial distribution of the three categories of landscape structures
across the study area.

3.3. Regionalizing anthropogenic landforms through multinomial logistic
regression model

The Likelihood Ratio, Score, and Wald tests (Table 7a) were exam-
ined to determine the improvement of the MLR model over the
intercept-onlymodel (also called the null model). All three tests yielded
similar results (p b 0.0001, Table 7a), namely, theMLRModelwasmore
effective than the null model. It was therefore inferred that at least one
explanatory variable was a significant predictor of landscape structures.

To assess the strength of multinomial logistic regression relation-
ship, Cox & Snell R Square and the Nagelkerke R square values were
used. These statistics provide an indication of the amount of variation
in the dependent variable. These are described as pseudo R square.
Table 7b reveals that the values are 0.57 and 0.66 respectively; suggest-
ing that between 57% and 66% of the variability is explained by the set of
variables used in the model.

The evaluation of the usefulness for logistic models was assessed by
computing the proportional accuracy rate due to chance. This statistic
was computed by calculating the proportion of cases for each category
based on the number of cases on each category and then by squaring
and summing the proportion of cases in each category. The value of
this statistic is equal to 0.406 in our case.

To characterize the model as useful, we compared the overall per-
centage accuracy rate produced versus the proportional accuracy rate
due to chance. If the latter is 25% less than overall percentage accuracy
rate, we can conclude that the model is helpful.

The classification accuracy rate was equal to 74.06% (Table 8a)
which was greater than the proportional by chance accuracy of 50.75%
(1.25 × 40.6% = 50.75%), suggesting that the model was useful.

The validation results using the external validation sample of 148 in-
dividuals are summarized in Table 8b. They revealed that the overall
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well classification by theMLRmodelwas less than that obtained by FDA
(72% versus 77% of correct classification). The discrepancy between the
results of the two classification models is owing to category UN where
the individuals are less well discriminated from the US category when
using the MLR model.

The intercept of themultinomial logistic regressionmodel and slope
coefficients for each predictor variables, along with their p-values for
categories US and UN of the training sample are shown in Table 9. The
model was developed with the probability of occurrence of category
LY (Lynchets) as reference for evaluating logits. TheWald test evaluates
whether or not, the independent variable is statistically significant in
differentiating between two groups in each of embedded binary logistic
comparisons.

In comparing the probabilities of occurrence of category US to cate-
gory LY, it is evident that all variables except for Planc were significant
Table 5
FDA: coefficient of ranking functions.

US LY UN

Constant −4.839 −9.734 −2.280
ST 18.536 17.210 12.618
Slope 2.345 3.655 1.379
Profc 1.363 6.743 −8.026
ST × ST −16.757 −6.563 −18.990
ST × Slope −1.055 −2.016 3.112
ST × Profc 1.726 −2.178 −20.639
Slope × Slope −0.272 −0.508 −0.489
Slope × Profc −0.299 −0.105 4.791
Profc × Profc −23.567 −11.456 −61.082

Table 4
FDA: standardized coefficients of canonical discriminant functions.

F1 F2

ST 0.817 0.437
Slope −0.346 0.108
Profc 0.410 −0.886
predictors. A unit increase in Slope increased the logit of occurrence of
category US as opposed to category LY. It also appears that a unit
decrease in ST would increase the logit of category US over category LY.

The statistically significant variables for category UNwith respect to
category LYwere also all variables except for Planc. A unit decrease in ST
increases the odds of category UN as opposed to category LY. A unit de-
crease in Profc seems to favor the occurrence of category UN as opposed
to category LY.

The MLR models summarized in Table 9 were used to estimate the
probabilities of occurrence of the spatial distribution of the three cate-
gories of landscape structures over the study area. In practice, the MLR
models were applied to the pixels of ST, Profc, Slope and Elv predictor
variables. Having made such calculations, we obtained maps showing
the probability of occurrence at each pixel for each category. Finally,
the categorywith the largest probabilitywas used to construct a predic-
tivemap (Fig. 4b) of the spatial distribution of landscape structures over
the study area.
Table 6
Confusion matrices resulting from the factorial discriminant analysis.

Category US LY UN Total % correct

(a) FDA: confusion matrix for the training sample
US 231 17 71 319 72.41
LY 8 87 5 100 87.00
UN 29 4 134 167 80.24
Total 268 108 210 586 77.13

(b) FDA: confusion matrix for the results of systematic cross-validation
US 230 17 72 319 72.10
LY 10 85 5 100 85.00
UN 29 4 134 167 80.24
Total 269 106 211 586 76.62

(c) FDA: confusion matrix for the results of external validation
US 52 7 11 70 74.29
LY 6 32 1 39 82.05
UN 8 1 30 39 76.92
Total 66 40 42 148 77.03
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3.4. Application of CART model to anthropogenic landform mapping

As already stated by Chartin et al. (2011), the overall prediction
performance of the CARTmodel was more than 80%when applied to
morphometric attributes and soil thickness values of the training
sample (Table 10a). The confusion matrix showed that the resulting
classification and regression tree performed well for categories US
and LY. Categories US and LY have 87.77% and 85.0% of their
Fig. 4. Spatial distribution of the three categories of landscape structures carried out from: (a) t
prediction models.
respective points rightly classified. Approximately three quarters
of the misclassified points from category US are classified in catego-
ry UN. Concerning category LY, the main errors of the model ap-
peared to involve the category US. In category UN, 24.0% of points
were incorrectly classified; they are all allocated to category US by
the model. The most important risk of confusion during the applica-
tion of the CART model then, involves the category UN and the
category US.
he ranking functions of the FDA; (b)MLRmodel; (c) CARTmodel; and (d) matching of the



Table 7
Goodness of fit measures for the multinomial logistic regression model.

(a) MLR: overall model evaluation

Tests χ2 df p

Likelihood ratio test 497.462 10 b0.0001
Score test 412.368 10 b0.0001
Wald test 155.910 10 b0.0001

(b) MLR: pseudo R-square

Cox & Snell R2 Nagelkerke R2

0.57 0.66

Table 8
Confusion matrices resulting from the multinomial logistic regression model.

Category US LY UN Total % correct

(a) Classification result for the training sample using multinomial logistic regression model
US 274 7 38 319 85.89
LY 11 86 3 100 86.00
UN 91 2 74 167 44.31
Total 376 95 115 586 74.06

(b): Confusion matrix for the results of external validation using multinomial logistic
regression model

US 55 6 9 70 78.57
LY 4 33 2 39 84.18
UN 20 1 18 39 46.15
Total 79 40 29 148 71.62

Table 10
Confusion matrices resulting from the classification and regression trees model.

Category US LY UN Total % correct

(a) CART: matrix of confusion for the training sample
US 280 10 29 319 87.77
LY 12 85 3 100 85
UN 40 0 127 167 76.05
Total 332 95 159 586 83.96

(b) CART: confusion matrix for the results of external validation
US 60 2 8 70 85.71
LY 4 34 1 39 87.18
UN 7 0 32 39 82.05
Total 71 36 41 148 85.14
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Table 10b presents validation results for the CARTmodel performed
through the validation sample. According to these results, 85% of the
points from the validation sample are well classified. Categories US, LY
and UN had 86%, 87% and 82% of their points well classified, respective-
ly. These proportions are slightly different from those presented in
Chartin et al. (2011) since the CART model, in this paper, considered
less morphometric attributes when running the model compared to
the model in Chartin et al. (2011). In any way, the present CART
model appeared significantly relevant even if the differences between
categories US and UN could be delicate in some situations. The applica-
tion of the decision rules of the CARTmodel to the grids of Slope, ST and
Profc allowedmapping (Fig. 4c) the different landscape structures over
the study area.

A total agreement between the three maps, achieved by the FDA,
MLR and CART models, was observed for 52% of the total area (Fig. 4d)
against 3% for a total disagreement. The confidence level of the assign-
ment of the structure types over these areas can be considered as very
high for 52% of the total area and very low for 3% of the total area.
Table 9
Multinomial logistic regression model parameters.

Category Source Coefficient SD χ2 Wald p N χ2

US Intercept 13.518 2.191 38.081 b0.0001
ST −10.888 1.184 84.518 b0.0001
Elv −0.103 0.025 17.117 b0.0001
Planc 3.783 2.666 2.013 0.156
Profc −13.197 2.480 28.313 b0.0001
Slope 0.817 0.165 24.452 b0.0001

UN Intercept 11.383 2.185 27.142 b0.0001
ST −6.013 1.076 31.236 b0.0001
Elv −0.116 0.025 21.156 b0.0001
Planc 4.145 2.729 2.308 0.129
Profc −17.027 2.498 46.459 b0.0001
Slope 0.712 0.161 19.636 b0.0001
As the overall well classification by the CART model (85%) was
higher compared to that achieved with the MLR and FDA models (72%
and 77% of accurate classification, respectively) based on the external
validation, it can be assumed that for 36% of the area (Fig. 4d) the con-
fidence level of the assignment of the structure can be considered as
high. Indeed, for these areas agreements between the CART model and
FDA model on the one hand and on the other hand between the CART
model and MLR model were observed. For the remaining area (9%),
the confidence level of the assignment of the structure can be consid-
ered as medium since the results of the CART model were different
from those achieved using themodels FDA andMLRwhich are obvious-
ly in agreement.

4. Summary and conclusions

The focus of this paper has been on the comparison of three
multivariate methods in the development of classification models
for landscape structures. The three methods used for developing
the classification model were factorial discriminant analysis
(FDA), multinomial logistic regression (MLR) and classification
and regression trees (CART). The models were constructed using
morphometric attributes and soil thickness that explain the occurrence
of three landscape structures. The results of this study showed that in
addition to soil thickness, themorphometric attributes that significantly
influenced the spatial distribution of landscape structures were slope
and profile curvature when using the CART and FDA models. The MLR
model uses the elevation in addition to the variables selected by the
CART and FDA models. The external validation revealed that the CART
model appeared more appropriate in the assignment of the objects to
the three categories of landscape structures compared to the FDA and
MLRmodels. The overall well classification for the threemodels ranged
from 72% (MLR model) to 85% (CART model). Nevertheless, the im-
provement of the assignment of objects reached amaximum of 15% be-
tween the CART model and the MLR model. In addition, the mapping
performed using each of the threemodels revealed a total disagreement
between themodels for only 3% of the study area and formore than 50%
of the study area the three models predicted a similar landscape struc-
ture. For the remaining area, two of the threemodels predicted a similar
landscape structure.

The question therefore arises as to which method should be
employed in a given context. All the threemethods can be used to assign
objects to two or more groups, and all the three methods can employ
one ormore predictor variables. FDA andMLR use all statistically signif-
icant predictor variables simultaneously in the model, whereas CART
use the predictor variables in a hierarchical and recursive manner. An
advantage of CART analysis lies in its use as a nonparametric classifier;
in contrast to FDA and MLR, which both make assumptions about the
nature of the data. In addition, the CART method gives rules in natural
language. From a practical and scientific point-of-view, it is always de-
sirable to choose the simplest model that has a satisfactory predictive
performance. Accordingly, the final message from our findings is that
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the CARTmethod is the simplest and the best for spatial distribution of a
categorical variable as it leads to a model which: (i) gives the best
results for both cross validation and the external validation; (ii) gives
classification rules in natural language handy to non-statistician users;
and (iii) requires no assumptions about the nature of the data
distribution.
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