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1. The Critical Coulomb wedge theory

- Mohr-Coulomb criterion of deformation:

T=Uu0, + C

- Wedge everywhere on the verge of failure

Stress : deformation
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Accretionary wedges
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Extensional wedges Sub-critical wedges:
normal faulting
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Modified after Xiao et al. (1991) -ﬁ

- Active extensional setting
- Basal shear stress towards the thicker part
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Extensional wedges

o
o

-
2
3
o
&
» 20
[}
o
8
=
=
w




What if there is no external force
(other than gravity)?

- Gravitational spreading

- Basal shear stress towards the thinner part
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ze -7
detachment surface
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- Noncohesive material on the verge of failure
- System subjected to pore-fluid pressure

- No downslope buttress



2. The theory adapted to gravitational instabilities

A part of the total stresses is
supported by the fluid

—— Effective stresses

()J=()'-Pf
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Equations of equilibrium:

o', = (1-A")pgzcosa

V4

G,, = PLgzsin o

Fluid overpressure ratio: A" =P_ /pgzcosa

A"=01n hydrostatic equilibrium
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2. The theory adapted to gravitational instabilities

Expression of ¢’ :

*

Extensional & Contractional states of stress

2 values of o’

Rankine states of equilibrium
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Expression of ¢’ :

Without downslope
resistance

Only extensional state of stress within the wedge

o', =(2Y-1)o’,,
“ 1 — siny'1 — FS2

ithY =
e cos? ¢
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2. The theory adapted to gravitational instabilities

The factor of safety FS:

fan

S = Ao tand

- Corrected from the fluid overpressure

- FS>1: unstable slope, shallow landsliding
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2. The theory adapted to gravitational instabilities

The effective basal friction u',:

Sliding = low friction on the basal detachment:

1y (1-1%) < p(1-17)

After expressing o’,, and o’,, on the detachment:
g X 27

z

E;

A, =1—(1—-M\°
: ( )MbE1
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| Shallow landsliding | Gravity spreading
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2. The theory adapted to gravitational instabilities

Alternate expression of U ,:

Dahlen’s definition:

Xz coordinate system
c,, independent of A

yy4

But u’, dependent on o’,.,, (varying with A)

|

Definition in the x’z’ coordinate system (detachment)

7\.b=E1+7\. - =

My
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Alternative expression




2. The theory adapted to gravitational instabilities

Alternative expression

- Negligible differences for compressive wedges

- Higher critical gravitational sliding limit



3. Experimental modelling

- Experimental verification of the theory
- Previous works:

Mostly compressive settings
Fluid pressure not taken into account
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3. Experimental modelling
Experimental set-up

A location of pressure profile Stress
sand wedge

coarse sand

glass microbeads

—

detachment

d. ~-~-\~~--\~--\~~
Justaple basg siév\em

air input P

reservoir

P .
fluid  Funo

— H/M=05
— H/MH=075
H'/H = 1

Grain size Bulk density ~ Angle of internal  Coefficient of internal  Permeability Cohesion

Material (um) (kg/m3) friction (°) friction (Darcy) (Pa)

Coarse sand 300 1600 34 0,67 90 0
(cover)

Glass microbeads  200-300 1600 24 0,44 15
(décollement)




3. Experimental modelling

Experimental set-up

A location of pressure profile Stress

sand wedge
coarse sand

glass microbeads

detachment
surface

- No downslope buttress
- Adjustable basal and surface slopes

- A", constant along the detachment
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Experimental procedure
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- Increasing air pressure
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Experimental procedure
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- Increasing air pressure

- Measurements of the critical fluid pressure
when sliding



3. Experimental modelling

Experimental
data

Model I
solution
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4. Discussion

Good agreement between
theory and experience

However, difficulties to
discriminate (I or II?)

Experimental
uncertainties:

Shape of the detachment
Permeabilities

Pressure losses

Air moisture

—> More models needed (low o)
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- Not restricted to accretionary prisms

——> weak décollement and no downslope buttress

A- Large submarine slumping

Methane-fed communities on the
Storegga slope
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5. Applicability to natural examples

A- Large submarine slumping -
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Modified after Kvalstad et al. (2005)

Unstable sedimentary cover

Sliding direction

Weakened marine clay layer
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B- Transform margins
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C- Onshore landslides

Waitawhiti, New Zealand
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C- Onshore landslides
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5. Conclusions

Critical Coulomb wedge theory applicable to
systems subjected to gravitational forces only

Experimental verification of the theory

2 different solutions but insufficient results
to validate either one or the other:
—> more experiments are required..

Potential applications to natural systems:
passive margins, landslides



