

The Coulomb Critical Taper theory applied to gravitational instabilities

Aurélien Lacoste

Régis Mourgues Cynthia Garibaldi

Modified after Dahlen (1990)

Wedge growth
Thrusting

Steepening until the critical taper is attained

Modified after Dahlen (1990)

Sliding along the basal detachment

General solution (Davis et al., 1983)

Surface of the wedge

Basal detachment

General solution (Davis et al., 1983)

$$\alpha + \beta \sim \rho, \lambda, \phi, \Psi, H$$

Case of a noncohesive wedge (Dahlen, 1984)

Exact solution:
$$\alpha + \beta = \Psi_b - \Psi_o$$

Case of a noncohesive wedge (Dahlen, 1984)

Exact solution:
$$\alpha + \beta = \Psi_b - \Psi_o$$

- Mohr-Coulomb criterion of deformation
- Wedge everywhere on the verge of failure

- Mohr-Coulomb criterion of deformation:

$$\tau = \mu \sigma_n + c$$

- Wedge everywhere on the verge of failure

Stress: deformation

Accretionary wedges

Modified after Dahlen (1984)

Accretionary wedges

Sub-critical wedges: formation of thrusts

Accretionary wedges

Stable supercritical
wedges: sliding on basal
detachment

Sub-critical wedges: formation of thrusts

Accretionary wedges

Unstable wedges: shallow
 slumping + normal
 faulting

Stable supercritical
wedges: sliding on basal
detachment

Sub-critical wedges: formation of thrusts

Accretionary wedges

Modified after Dahlen (1984)

Extensional wedges

Modified after Xiao et al. (1991)

Extensional wedges

Modified after Xiao et al. (1991)

Sub-critical wedges: normal faulting

Extensional wedges

Modified after Xiao et al. (1991)

Sub-critical wedges: normal faulting

Stable wedges: sliding
 on basal detachment

Extensional wedges

Modified after Xiao et al. (1991)

Sub-critical wedges: normal faulting

Stable wedges: sliding
 on basal detachment

- Active extensional setting
- Basal shear stress towards the thicker part

Extensional wedges

Modified after Xiao et al. (1991)

Extensional wedges

Modified after Xiao et al. (1991)

-lpha increases eta constant

Extensional wedges

Modified after Xiao et al. (1991)

-lpha increases eta constant

Faulting until stable configuration

Extensional wedges

Modified after Xiao et al. (1991)

What if there is no external force (other than gravity)?

- Gravitational spreading
- Basal shear stress towards the thinner part

- Noncohesive material on the verge of failure

- Noncohesive material on the verge of failure
- System subjected to pore-fluid pressure

- Noncohesive material on the verge of failure
- System subjected to pore-fluid pressure
- No downslope buttress

A part of the total stresses is supported by the fluid

-----> Effective stresses

$$\sigma' = \sigma - P_f$$

Equations of equilibrium:

$$\sigma'_{zz} = (1-\lambda^*)\rho gz \cos \alpha$$

$$\sigma'_{xz} = \rho gz \sin \alpha$$

Equations of equilibrium:

$$\sigma'_{zz} = (1-\lambda^*)\rho gz \cos \alpha$$

$$\sigma'_{xz} = \rho gz \sin \alpha$$

Fluid overpressure ratio:

$$\lambda^* = P_{ov}/\rho gz \cos \alpha$$

Equations of equilibrium:

$$\sigma'_{zz} = (1-\lambda^*)\rho gz \cos \alpha$$

$$\sigma'_{xz} = \rho gz \sin \alpha$$

Fluid overpressure ratio: $\lambda^* =$

$$\lambda^* = P_{ov}/\rho gz \cos \alpha$$

 $\lambda^* = 0$ in hydrostatic equilibrium

Expression of σ'_{xx}:

2 values of σ'_{xx}

Extensional & Contractional states of stress

Expression of σ'_{xx} :

2 values of σ'_{xx}

Extensional & Contractional states of stress

Rankine states of equilibrium

Expression of σ'_{xx} :

Without downslope resistance

Only extensional state of stress within the wedge

Expression of σ'_{xx} :

Without downslope resistance

Only extensional state of stress within the wedge

$$\sigma'_{xx} = (2Y-1)\sigma'_{77}$$

with
$$Y = \frac{1 - \sin\sqrt{1 - FS^2}}{\cos^2 \phi}$$

The factor of safety FS:

$$FS = \frac{\tan \alpha}{(1 - \lambda^*) \tan \phi}$$

The factor of safety FS:

$$FS = \frac{\tan \alpha}{(1 - \lambda^*) \tan \phi}$$

- Corrected from the fluid overpressure
- FS>1: unstable slope, shallow landsliding

The effective basal friction $\mu'_{\underline{b}}$:

Sliding = low friction on the basal detachment:

$$\mu_b(1-\lambda^*_b) < \mu(1-\lambda^*)$$

The effective basal friction μ'_{b} :

Sliding = low friction on the basal detachment:

$$\mu_{b}(1-\lambda^{*}_{b}) < \mu(1-\lambda^{*})$$

After expressing σ'_{xz} and σ'_{zz} on the detachment:

$$\lambda_b^* = 1 - (1 - \lambda^*) \frac{E_2}{\mu_b E_1}$$

System subjected to gravity only: 3 domains

System subjected to gravity only: 3 domains

Alternative expression of $\mu'_{\underline{b}}$:

Dahlen's definition:

$$\mu'_b = \mu_b \frac{1 - \lambda_b}{1 - \lambda}$$

<u>Alternative expression of $\mu'_{\underline{b}}$:</u>

Dahlen's definition:

$$\mu'_b = \mu_b \frac{1 - \lambda_b}{1 - \lambda}$$

xz coordinate system (surface)

 σ_{zz} independent of λ

Alternative expression of $\mu'_{\underline{b}}$:

Dahlen's definition:

xz coordinate system σ_{zz} independent of λ

But μ'_b dependent on $\sigma'_{z_1z_1}$ (varying with λ)

Alternate expression of μ'_{b} :

Dahlen's definition:

xz coordinate system σ_{zz} independent of λ

But
$$\mu'_b$$
 dependent on $\sigma'_{z'z'}$ (varying with λ)

Definition in the x'z' coordinate system (detachment)

$$\lambda_b^* = E_1 + \lambda^* - \frac{E_2}{\mu_b}$$

- Negligible differences for compressive wedges
- Higher critical gravitational sliding limit

- Experimental verification of the theory
- Previous works:

Mostly compressive settings Fluid pressure not taken into account

Experimental set-up

Material	Grain size (µm)	Bulk density (kg/m3)	Angle of internal friction (°)	Coefficient of internal friction µ	Permeability (Darcy)	Cohesion (Pa)
Coarse sand (cover)	300	1600	34	0,67	90	0
Glass microbeads (décollement)	200-300	1600	24	0,44	15	0

Experimental set-up

Material	Grain size (µm)	Bulk density (kg/m3)	Angle of internal friction (°)	Coefficient of internal friction µ	Permeability (Darcy)	Cohesion (Pa)
Coarse sand (cover)	300	1600	34	0,67	90	0
Glass microbeads (décollement)	200-300	1600	24	0,44	15	0

Experimental set-up

- No downslope buttress
- Adjustable basal and surface slopes
- λ^*_b constant along the detachment

Experimental procedure

$$\alpha$$
 = 15°; β = 10°

- Increasing air pressure

Experimental procedure

$$\alpha$$
 = 15°; β = 10°

- Increasing air pressure
- Measurements of the critical fluid pressure when sliding

<u>Results</u>

Experimental data

Model I solution

Alternative solution

Good agreement between theory and experience

Good agreement between theory and experience

However, difficulties to
discriminate (I or II?)

Good agreement between theory and experience

However, difficulties to discriminate (I or II?)

Good agreement between theory and experience

However, difficulties to discriminate (I or II?)

Experimental
uncertainties:

- Shape of the detachment

Good agreement between theory and experience

However, difficulties to discriminate (I or II?)

- Shape of the detachment
- Permeabilities

Good agreement between theory and experience

However, difficulties to discriminate (I or II?)

- Shape of the detachment
- Permeabilities
- Pressure losses

Good agreement between theory and experience

However, difficulties to discriminate (I or II?)

- Shape of the detachment
- Permeabilities
- Pressure losses
- Air moisture

Good agreement between theory and experience

However, difficulties to discriminate (I or II?)

Experimental
uncertainties:

- Shape of the detachment
- Permeabilities
- Pressure losses
- Air moisture

More models needed (low α)

- Not restricted to accretionary prisms
- weak décollement and no downslope buttress
- A- Large submarine slumping

- Not restricted to accretionary prisms

weak décollement and no downslope buttress

Storegga slide, Norway

A- Large submarine slumping

Modified after Kvalstad et al. (2005)

A- Large submarine slumping

Modified after Kvalstad et al. (2005)

B- Transform margins

Image Google Earth

B- Transform margins

Image Google Earth

B- Transform margins

C- Onshore Landslides

C- Onshore Landslides

- Critical Coulomb wedge theory applicable to systems subjected to gravitational forces only

- Critical Coulomb wedge theory applicable to systems subjected to gravitational forces only

- Experimental verification of the theory

- Critical Coulomb wedge theory applicable to systems subjected to gravitational forces only

- Experimental verification of the theory

- 2 different solutions but insufficient results to validate either one or the other:

more experiments are required...

- Critical Coulomb wedge theory applicable to systems subjected to gravitational forces only

- Experimental verification of the theory

2 different solutions but insufficient results to validate either one or the other:
 more experiments are required...

 Potential applications to natural systems: passive margins, landslides