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a + b ~ r, l, f, Y, H 

General solution (Davis et al., 1983) 
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1. The Critical Coulomb wedge theory 

- Mohr-Coulomb criterion of deformation: 
 

   t = msn + c 
 
 
 

- Wedge everywhere on the verge of failure 
 
 

     Stress : deformation 
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1. The Critical Coulomb wedge theory 

Extensional wedges 

Modified after Xiao et al. (1991) 



What if there is no external force  
(other than gravity)? 

- Gravitational spreading 
 

- Basal shear stress towards the thinner part 
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- Noncohesive material on the verge of failure 
 

- System subjected to pore-fluid pressure 
 

- No downslope buttress 



2. The theory adapted to gravitational instabilities 

A part of the total stresses is 
supported by the fluid 

 
 Effective stresses 
 
 s’ = s - Pf 
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2. The theory adapted to gravitational instabilities 

s’zz = (1-l*)rgzcosa 
 
s’xz  = rgzsin a 

Equations of equilibrium: 

l* = Pov/rgzcosa Fluid overpressure ratio: 

l* = 0 in hydrostatic equilibrium 
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Expression of s’xx : 

2 values of s’xx 
 
Extensional & Contractional states of stress 
 

Rankine states of equilibrium   
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Expression of s’xx : 

Only extensional state of stress within the wedge 

s’xx = (2Y-1)s’zz 

Without downslope 
resistance 
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The factor of safety FS: 

- Corrected from the fluid overpressure 
 

- FS>1: unstable slope, shallow landsliding 
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2. The theory adapted to gravitational instabilities 

The effective basal friction µ’
b: 

Sliding = low friction on the basal detachment: 
 

   mb(1-l*
b) < m(1-l*) 

 
 
After expressing s’xz and s’zz on the detachment: 
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2. The theory adapted to gravitational instabilities 

Alternate expression of µ’
b: 

Dahlen’s definition: 
  
 xz coordinate system 
 szz independent of l  
 
 
But µ’b dependent on s’z’z’ (varying with l)  

Definition in the x’z’ coordinate system (detachment) 
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Alternative expression 



2. The theory adapted to gravitational instabilities 

- Negligible differences for compressive wedges 
 

- Higher critical gravitational sliding limit 

Alternative expression 



3. Experimental modelling 

- Experimental verification of the theory 
 

- Previous works: 
 
Mostly compressive settings 
Fluid pressure not taken into account 
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3. Experimental modelling 

- No downslope buttress 
 

- Adjustable basal and surface slopes 
 

- l*
b constant along the detachment 

Experimental set-up 
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3. Experimental modelling 

Experimental procedure 

- Increasing air pressure 
 

- Measurements of the critical fluid pressure 
when sliding 

a = 15° ; b = 10° 

5 cm 5 cm 



3. Experimental modelling 

Results 

Experimental 
data 

Model I 
solution 

Alternative 
solution 
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4. Discussion 

Good agreement between 
theory and experience 
 
However, difficulties to 
discriminate (I or II?) 
 

 Experimental 
 uncertainties: 
 

- Shape of the detachment 
- Permeabilities 
- Pressure losses 
- Air moisture 

 
More models needed (low a) 
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Rising fluids 
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B- Transform margins 

Pattier et al. (2013) 



5. Applicability to natural examples 

C- Onshore landslides 

Waitawhiti, New Zealand 



5. Applicability to natural examples 

C- Onshore landslides 

Lacoste et al. (2009) 

A 

B 
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5. Conclusions 

- Critical Coulomb wedge theory applicable to 
systems subjected to gravitational forces only 
 
 

- Experimental verification of the theory 
 
 
- 2 different solutions but insufficient results 

to validate either one or the other:  
   more experiments are required… 
 
 

- Potential applications to natural systems: 
passive margins, landslides 


