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This paper investigates how the spatial correlations between topographic attributes and a soil thickness can be
improved by focusing on the relationships between them at specific spatial scales. In addition, this paper exam-
ines the effects of the topographic attribute data sources that are used as explanatory variables for modeling the
response variable, and considers the possibility of model extrapolation for mapping beyond the area where the
model was established. Here, factorial kriging analysis (FKA) and partial least square regression (PLSR) analysis
are used to separate nuggets and small- and large-scale structures in data including four topographic attributes
and soil thickness (ST). These analyses were conducted at different scales to analyze the relationships between
ST and the selected topographic attributes in the southwest region of the Parisian Basin. The structural correlation
coefficients from the FKA show strong correlations between the variables. These correlations, which change as
a function of spatial scale, are not revealed by the linear correlation coefficients. The Eigen vectors from the
principal component analysis that was performed on the small-scale and large-scale structures of the linear
co-regionalization model are used to obtain ST and the topographic attributes at both spatial scales over the
study area. The ST models are built as a function of topographic attributes using PLSR. Results have shown that
the models built using variables that were assessed at a specific scale are better at predicting the target variable
than models that were built using raw data. Regarding the models that were built using raw data, the structural
correlations that occur at different spatial scales are merged together and the variance–covariance matrix of the
nugget that represents data noise is not filtered out. Measures of model performance that are based on a valida-
tion data set have shown that the model based on small-scale structure (Model-S) is better for predicting soil
thickness than the model based on large-scale structure (Model-L). The effects of topographic attribute data
sources as explanatory variables for modeling ST are less significant than the effects of the two models for map-
ping.Moreover, extrapolation of themodel-S beyond the areawhere itwas generated is appropriate. The decom-
position process is associated with a modeling approach, such as the PLSR, which accounts for the collinearity
between predictor variables and leads to an efficient prediction model. These results are important for modeling
soil properties based on topographic attributes and for spatially generalizing models that have been established
over small to large areas. Thus, in the presence of nested variogrammodels, the correlations between variables of
interest and auxiliary information should be improved by filtering out some of the spatial structures by factorial
kriging. The information filtered is associated with an appropriate approach for modeling when collinearity
occurs between the predictor variables and provides a suitable model for predicting and spatially generalizing
a locally established model.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Topographic attributes like slope gradient are commonly used by
soil surveyors to delineate soil types in the landscape and to model
the spatial distribution of various soil properties (e.g., Moore et al.,
1993; Bell et al., 1994; Knotters et al., 1995; Bourennane et al., 1996;
33 2 38 41 78 69.
. Bourennane).
King et al., 1999; McBratney et al., 2003; Lagacherie et al., 2007;
Debella-Gilo and Etzelmüller, 2009; Kim and Zheng, 2011). However,
good correlations that are qualitatively described in the field between
certain soil properties and topographic attributesmay not be reproduced
by quantitative data because the two types of information can be mea-
sured at supports with various sizes (e.g., Stevenson et al., 2010; Kim
and Zheng, 2011). Therefore, topographic attributes should be computed
at an appropriate scale to represent a particular process that occurs in
soils. If these scale effects are not considered, the computed attributes
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maybemeaningless and the processes of interestmay bemasked. There-
fore, it is important to determine the appropriate scale for analyzing
relationships between soil variables and topographic attributes.

Wide use of digital elevation models (DEMs) for modeling environ-
mental processes has resulted in several research papers regarding the
following topics: (1) digital elevation data sources, (2) DEM accuracy,
(3) algorithms for deriving topographic attributes, and (4) obtaining
optimal DEM resolution (e.g., Desmet and Govers, 1996; Wilson et al.,
2000; Thompson et al., 2001; Claessens et al., 2005; Erskine et al.,
2006; Smith et al., 2006; Wechsler, 2007; Li et al., 2011; Shi et al.,
2012). In contrast, this paper focuses on removing noise from DEMs to
extract relevant information and determine an appropriate scale for
relating topographic attributes to soil properties.

The main objective of this paper is to investigate how the spatial
relationships between a soil variable and topographic attributes can
be improved by obtaining stronger correlations between them at specif-
ic spatial scales. In addition, the following aspects are examined: (i) the
effects of the data source used to derive the topographic attributes as
explanatory variables for modeling the response variable and (ii) the
extrapolation of a soil thickness variation model beyond the area
where it was established. Factorial kriging analysis (FKA) was used to
separate the data at different scales to analyze the relationships be-
tween soil thickness (ST) and the topographic attributes using partial
least square regression (PLSR).

The main benefits of FKA relative to traditional spatial smoothers
(e.g., median filtering) and classical multivariate data analysis (e.g.,
principal component analysis: PCA) are that FKA filters noise from
the data and can be used to decompose structured data components
into several spatial components (i.e., local versus regional variability)
based on semivariogram models. For example, important features like
the range of spatial correlation are not accounted for by classical PCA.
In addition, filtering data noise is an important issue. Thus, it would be
useful to decompose the structured variability according to the corre-
sponding spatial scale rather than by using a filtering algorithm to elim-
inate hotspots. Filtration and decomposition could both be reached
using FKA. Furthermore, an approach that accounts for collinearity
between the predictor variables (PLSR) is considered here for modeling
the target variable.

Several authors (e.g., Goovaerts and Webster, 1994; Bourennane
et al., 2003, 2012; Castrignano et al., 2012; Muñoz and Kravchenko,
2012) have addressed the scale issue previously using FKA. These
authors have shown that weak correlations for a given spatial scale
can mask actual correlations between variables. Thus, this paper inves-
tigates modeling at specific scales and uses developed approaches to
Km700

Fig. 1. The location of the study area within France (source of the map
extrapolate the model beyond its established area. Furthermore, this
study attempts to confirm previous results regarding the usefulness
of decomposing the structured variability and filtering noise to extract
relevant features from data and strengthen the correlations between
variables.
2. Study area and data

This study was conducted over a 17 ha (Fig. 1) southeast-facing
hillslope near the village of Seuilly (in the southwestern region of the
Parisian Basin, 47°08.31′N, 0°10.97′E). This site is part of a network of
French sites where soil erosion has been studied and the soils have
been sampled frequently. In addition, this area represents a calcareous
landscape of Western Europe. The elevation of the study area varies
from 37 to 80 m, and the slope length is 750 m.

Accurate coordinates and elevations were obtained at 1550 points
by post-treatment (differential correction using GPS Pathfinder ®
Office) of data that were recorded by DGPS (Trimble ® ProXRS),
which was used as a base station and as a mobile recorder. Next, the
DEM was estimated on a grid at a resolution of 2 m. Details regarding
the methods and parameters that were used to generate the DEM are
presented by Chartin et al. (2011). Finally, four topographic attributes,
slope gradient (S), curvature (C), plan curvature (Cl) andprofile curvature
(Cr), were derived from the DEM by using the algorithms (Zeverbergen
and Thorne, 1987; Moore et al., 1991) implemented in ArcGIS 9.3.1.

Soil thickness was measured with a manual auger according to two
sampling schemes. The first sampling scheme measured soil thickness
over well-described lynchets and undulations (Bolline, 1971; Macaire
et al., 2002; Salvador-Blanes et al., 2006; Chartin et al., 2011) across
the study area. These features were easily identified in the field. In
contrast, the second sampling scheme measure soil thickness across
the study area by randomly considering the soil samples from each
25 × 25 m square within the grid. Both sampling designs included 734
samples. Twenty percent of the observations (148 samples) were ran-
domly selected and used as the validation set. The remaining 80% of
the dataset (586 samples)was used as the prediction set of ST. Ordinary
kriging was used throughout the study area (17 ha) with a 2 m resolu-
tion grid that was consistent with the DEM and its derived attributes.
For ST kriging, an experimental variogram was computed and fit by
a model using the weighted least squares method. Cross validation
was used on the original data to validate the variogram model. Every
known point was estimated by using the surround points, but not the
point itself. After performing these calculations, the mean error should
s: SRTM 90 m Digital Elevation Data and I.G.N. in 1988 and 2005).
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be near zero and the ratio of the mean squared error to the kriging var-
iance should be near unity.

3. Methods

3.1. Factorial kriging analysis (FKA)

A geostatistical method such as FKA can be used to decompose raw
variables into several components according to different spatial scales.
Consequently, modeling could be performed for the values of the pre-
dictor variables that are strongly correlated with the response variable.
In addition, other methods could be considered, such as the explicit
use of residuals in the statistical model. However, comparing the
approaches that address these correlated predictor variables is beyond
the scope of this study.

FKA isolates and displays variation sources that act at different
spatial scales with different correlation structures. The theory that un-
derlies FKA has been described in several publications (e.g., Goovaerts,
1997; Wackernagel, 1998). Below, we summarize the major steps of
this geostatistical technique.

Methods based on second-order distribution moments (such as the
FKA) are sensitive to skewed data (e.g., Goovaerts, 1997; Chilès and
Delfiner, 1999). Therefore, in FKA, raw to Gaussian transformations
were conducted before data analysis. Finally, back-transformation
(Gaussian to raw) to the original unit was performed to validate and
present the results.

FKAbegins by analyzing the co-regionalization of a set of variables to
define a linear co-regionalizationmodel (LMC). The p (p+1) / 2 exper-
imental direct and cross variograms of the p variables require prior
modeling that uses the linear combination of the same set of variograms
that are standardized to a unit sill gu(h). The h parameter represents the
vector (lag) that separates any pair of measurements made at locations
uα and uα + h, and gu(h) represents the different variogram functions
considered in the LMC. Thus, for any couple of variables i and j, the
variogram γij takes the following form:

γij hð Þ ¼
XNs

u¼1

buijg
u hð Þ; ð1Þ

where biju are the coefficients thatmust be determined by the data. Using
matrix notation, the LMC can be rewritten as:

Γ hð Þ ¼
XNs
u¼1

Bugu hð Þ; ð2Þ

where Γ(h) is a p× p symmetricmatrixwhose diagonal and off-diagonal
elements are the direct and cross-variogram values, respectively, for a
given lag h. Bu is the p × p symmetric matrix of the coefficients biju, and
is referred to as the co-regionalization matrix.

To ensure that the variances of the finite linear combinations of the
random functions are positive, the iterative procedure developed by
Goulard (1989) was used. Thus, the best LMC, regarding the weighted
residual sum of squares (Goulard and Voltz, 1992), was chosen by com-
paring the goodness of fit for several combinations of gu(h) functions
with different ranges.

Each variogram function in gu(h) indicated the spatial variance for
the individual variable measurements and the spatial covariance be-
tween the measurements for a pair of variables over a given range.
This range defines a spatial scale. Thus, for a given variogram function
of LMC, we can estimate the relationship between a pair of variables
at a particular spatial scale given by the range.

The second step consists of an analysis of the structural correlation
coefficients, which is conducted using each co-regionalization matrix
Bu. The values of each Bu describe the relationships between the chosen
variables at the particular spatial scale that is defined by the basic
variogram function of gu(h). However, the structural correlation coeffi-
cient riju, defined as follows:

ruij ¼
buijffiffiffiffiffiffiffiffiffiffi
buiib

u
jj

q ; ð3Þ

is more revealing as it is a unit-freemeasure of correlation between any
two variables at different spatial scales and is defined when modeling
the co-regionalization. However, the value of riju depends entirely on
modeling the co-regionalization between each pair of variables.

The final step in FKA consists of a principal component analysis
(PCA), which is applied to the co-regionalization matrices. These co-
regionalization matrices are the variance–covariance matrices that
describe the correlation structure of a set of variables at different spatial
scales. Unlike the PCA that is performed for a classical variance–
covariance matrix, the PCA performed for the co-regionalization matri-
ces yields sets of spatial components (regionalized factors) for each
spatial scale u. Accordingly, the Eigen vectors from the PCA of small-
scale and large-scale structures can be used to infer input data for
modeling at different spatial scales over a study area.

3.2. Partial least square regression (PLSR)

PLSR was used to model the response variable as a function of topo-
graphic attributes at different spatial scales. The underlying theory of
PLSR has been described in several statistical textbooks and papers
(e.g., Wold et al., 1984; Höskuldsson, 1988; Tenenhaus, 1998). Here,
we describe the major steps for the PLSR algorithm.

PLSR can be described as a generalized multiple linear regression
(Gerlach et al., 1979). However, in contrast tomultiple linear regression,
PLSR can analyze data that are collinear, noisy, and have numerous
X-variables (X: a set of predictor variables). Moreover, PLSR can simul-
taneously model several response (Y) variables (Y: a set of response
variables).

The goal of PLSR is to predict values of Y from values of X and to
describe their common structure. This goal could be achieved using
ordinary multiple regression. However, when the number of predictors
is large, X is likely singular and the regression approach is no longer
feasible (i.e., due to multicollinearity). Several approaches have been
developed to cope with this problem. One approach is to eliminate
some predictors, e.g., using stepwise methods. Another approach is
called principal component regression, which is used to perform a PCA
of theXmatrix before using the principal components of X as regressors
for Y. The orthogonality of the principal components eliminates the
multicollinearity problem. However, choosing an optimum subset of
predictors remains problematic. One possible strategy is to keep only
a few of the first components. However, the latter components are cho-
sen to explain X rather than Y. Thus, nothing guarantees that the princi-
pal components (which explain X) are relevant for Y.

In contrast, PLSR finds components from X that are also relevant for
Y. Specifically, PLSR searches for a set of components (called latent
vectors) that simultaneously decompose X and Y with the constraint
that these components explain as much of the covariance between X
and Y as possible. This step corresponds to generalizing the PCA. In
addition, this step is followed by a regression step where the decompo-
sition of X is used to predict Y.

Cross validation is used to determine the number of significant PLSR
components (e.g., Tenenhaus, 1998). With cross validation, several ob-
servations are placed aside during model development. The response
variable for these unused observations is predicted by the model and
compared with the actual values. This procedure is repeated several
times until every observation has been placed aside once. Theprediction
error sum of squares (Press) is the squared differences between the
observed and predicted values when the observations are placed
aside. Based on the Press, Q2 (the fraction of the total variation of the



Table 1
Summary statistics of soil thickness and several topographic attributes that were derived
from a DEM. g1: skewness.

Variable Unit Count Mean Std Min Max g1

Soil thickness: prediction set m 586 0.60 0.31 0.22 1.85 1.48
Soil thickness: validation set 1 m 148 0.70 0.39 0.25 2.23 1.38
Soil thickness: validation set 2 m 83 1.03 0.58 0.21 2.30 0.74
Soil thickness: spatial estimate m 44,052 0.61 0.26 0.11 1.72 1.27
Curvature from DEM (C) m−1 44,052 0.00 0.33 −3.35 4.38 3.49
Plan-curvature from DEM (Cl) m−1 44,052 0.00 0.12 −1.83 1.31 −1.22
Profile-curvature from DEM (Cr) m−1 44,052 0.00 0.27 −3.82 3.35 −4.08
Slope gradient from DEM (S) % 44,052 2.85 1.46 0.03 6.93 0.51
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dependent variables that can be predicted by a component) and Q2
cum

(cumulative Q2) can be calculated as follows:

Q2 ¼ 1:0−Press=SS ð4Þ

Q2
cum ¼ 1:0−∏ Press

SS

� �
a
; ð5Þ

where a = 1, 2, …k and SS are the residual sum of squares for the

previous dimension, ∏ Press
SS

� �
a
, which is the product of Press/SS for

each individual component a.
The tested PLSR component is significant when Press/SS ≤0.952 or

Q2 ≥ (1− 0.952)= 0.0975. Themodel is considered to have a good pre-
dictive ability when Q2

cum is greater than 0.5 (Tenenhaus, 1998).
The variable importance in the projection (VIP) is a parameter

that shows the importance of a variable (a predictor variable) in the
PLSR model. The methods for calculating the VIP are presented by
Tenenhaus (1998). The first PLSR analysis with all predictor variables
was performed using these methods. Next, the variable with the lowest
VIP value was eliminated and the PLSR analysis was performed again.
This procedure was repeated until only two variables remained in the
PLSR model. Finally, the obtained PLSR models that had the highest
Q2

cum values and the fewest predictor variables were selected as the
optimal models.

3.3. Model performance

The performance of the models that were obtained through PLSR
and the variables that were inferred at different spatial scales were
examined regarding their prediction abilities. The ST was estimated at
each point of the validation set (148 sites of the validation set) by the
previously mentioned models. A scatter plot of the measured versus
predicted ST values at each validation site was created and the mean
error (ME) and root mean square error (RMSE) were calculated.

3.4. Effects of the data sources of the predictor variables whenmodeling the
response variable: the developed approach

The validity of the established models regarding the source of
the DEM that was used to derive the predictor variables was examined
by considering a DEM established from airborne Light Detection and
Ranging (LiDAR). The LiDAR was conducted over an area of 3 km2 that
included the 17 ha described in Section 2 and was used to establish
the ST spatial variation models.

Two scenarioswere tested to examine the validity of themodels that
were developed by the approaches described in Subsections 3.1 and 3.2.
These scenarios used predictor variables that were derived from LiDAR
rather than DGPS.

The first scenario entailed selecting topographic attributes within
the 17 ha area based on the LiDAR when these values are in the same
range as the topographic attributes that were derived from the DEM
and established byDGPS. After selection, themodelswere applied to de-
termine the soil thickness across the 17 ha area. The soil thicknessmaps
that were obtained from the first scenario were called Model-S-LiDAR-
Strict andModel-L-LiDAR-Strict. In thefirst scenario, STwasnot inferred
formanypixels because the selection of topographic attributeswas con-
ditioned by the range of topographic attributes that were derived from
the DEM and established by DGPS.

In the second scenario, the models were applied over the same area
(17 ha), but without constrains regarding the topographic attributes
that were derived from the LiDAR. In this case, the inferred soil thickness
maps were called Model-S-LiDAR-Large and Model-L-LiDAR-Large.
In addition, ST was estimated for all pixels in the 17 ha area. The four
maps that resulted from the two scenarioswere evaluatedusing a valida-
tion set and the criteria mentioned in Subsection 3.3.
3.5. Extrapolation approach and data

The extrapolation approach consists of the following steps:
(i) selecting a model among the models that were developed by using
the predictor variables derived from the DEM and established by the
DGPS measurements on the 17 ha area, and (ii) applying the selected
model to an area of 3 km2 where the predictor variables are derived
from a LiDAR survey. Data from 231 individuals were used to measure
the performances of the model for extrapolation beyond the area
where it was generated. This data set consisted of 148 individuals
from the validation set across the 17 ha area and an additional 83 loca-
tions where ST was measured specifically for validation. Here, the
criteria mentioned in Subsection 3.3 were used to measure model
performance in extrapolation.

4. Results and discussion

4.1. Spatial estimates and modeling of ST

The measured ST values varied from 0.22 to 1.85 m (Table 1: first
line) with a mean of 0.60 m and a standard deviation (S.D.) of 0.31 m.
STwasmapped (Fig. 2c) by ordinary kriging on a regular grid at a reso-
lution of 2 m across the entire study area. The spatial autocorrelation of
ST (Fig. 2b),whichwasquantified through the semivariogram, indicated
that the experimental variogram was not flat and presented a sill for a
distance of at least 400 m. Overall, 586 data points (Fig. 2a) were used
to estimate the experimental variogram with a lag size of 22 m. The
number of pairs used to compute the average semivariance per lag
varied from 715 pairs to 13,013 pairs for the first and sixth lags, respec-
tively. The average semivariance for the last lag was computed from
4339 pairs. The tolerance for lag distance was 50% of the lag size. The
nested model (the nugget plus a Gaussian and spherical model) that
was fit to the experimental variogram is relevant. The cross validation
results indicated that the mean error was nearly zero (−0.002) and
the ratio of the mean squared error to the kriging variance was nearly
1 (1.011). Various models were tested to fit the experimental model.
Here, we note the model that provided the most accurate prediction
criteria. For example, the model composed of a nugget and a spherical
model provided a mean error of −0.004 with a mean square error to
kriging variance error ratio of 0.937.

Table 1 summarizes the statistics obtained from the raw variables
used to model ST as a function of four topographic attributes (S, C, Cl,
and Cr). PLSR was used to model ST throughout the study area by
using these attributes as predictor variables. This analysis was conducted
using 44,052 observations and resulted in a model that only explained
17% (R2 = 0.17) of the total ST variance (Table 2). In addition, the stan-
dardized coefficient values of the PLSR model obtained on raw data
(Table 2) indicated that Cr and Cwere not significant terms. The standard
errors of the Cr and C coefficients were similar to the coefficients them-
selves. From a statistical standpoint, this result was expected because
the Pearson's correlation coefficients (Table 3) indicated weak correla-
tions between ST and the topographic attributes (predictor variables)
and strong correlations between some topographic attributes. These
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Table 3
Linear correlation coefficients and structural correlation coefficients. C: curvature; Cl: plan
curvature; Cr: profile curvature; S: slope gradient; and ST: soil thickness.

C Cl Cr S

(a) Pearson correlation coefficient
Cl 0.60
Cr −0.93 −0.27
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statistical results contradict results from previous studies that were con-
ducted in this area (e.g., Bellemlih, 1999; Chartin et al., 2011). In addition,
these results contradict the survey that was conductedwithin this study.
However, both studiesmentioned that the soil distribution and thickness
are mainly elucidated by topographic attributes.

4.2. Co-regionalization analysis of ST and topographic attributes

The analysis of the variograms and cross-variograms (not shown)
suggested the presence of three basic structures at different spatial
scales for the five transformed variables (ST, S, C, Cr and Cl). In addition
to the nugget term, the two elementary variogram functions that were
used for the co-regionalization model were spherical models with
ranges of 90 and 150 m. These models were called small-scale and
large-scale structures, respectively.

The linear correlation coefficient did not reveal actual relationships
among the variables (Table 3: Pearson correlation coefficient) because
it averaged the distinct changes in the correlation structures that oc-
curred at different spatial scales and included the measurement errors
thatwere inherent in the nugget effect. Thus, filtering the different com-
ponents resulted in strong correlations between the variables (Table 3:
small-scale and large-scale structures) that changed as a function of
the spatial scale. For example, Table 3 shows a weak linear correlation
between Cr and S (R = 0.01). Nevertheless the structural correlation
coefficients (Table 3: small-scale and large-scale structures) were
Table 2
Standardized coefficient values of the PLSR model when using raw data. C: curvature; Cl:
plan curvature; Cr: profile curvature; and S: slope gradient.

Variable Coefficient Standard
error

The lower limit of
the 95% confidence
interval

The upper limit of
the 95% confidence
interval

C −0.038 0.021 −0.079 0.003
Cl −0.052 0.008 −0.067 −0.037
Cr 0.022 0.024 −0.025 0.070
S −0.401 0.102 −0.600 −0.201

Rajusted
2 = 0.17.
much greater between these two variables once the nugget effect was
filtered out. Likewise, the large correlation between ST and S in the
small-scale structure (−0.90) was hidden by the lack of correlation in
the large-scale structure (Table 3: large-scale structure).

The coefficients of the small-scale and large-scale structures were
used to perform two distinct principal component analyses (PCA). The
two first components (Fig. 3) accounted for more than 86% of the total
variance in the matrix. Fig. 3a shows that the first component for
the small-scale structure was positively correlated with Cr and ST and
negatively correlated with S, C, and Cl.

Similarly, the first component for the large-scale structure was
strongly and positively correlated with S and Cl (Fig. 3b). In contrast,
ST and C contributed more to the second component. However, Cr was
positively related to both components. Comments regarding the nugget
scale are omitted here due to the measurement errors that were inher-
ent at the nugget spatial scale. In geostatistics, the nugget structure
S 0.01 0.05 0.01
ST −0.04 −0.05 0.02 −0.42

(b) Small-scale structure (Spherical: 90 m)
Cl 0.65
Cr −0.95 −0.37
S 0.50 0.13 −0.57
ST −0.21 −0.20 0.21 −0.90

(c) Large-scale structure (Spherical: 150 m)
Cl 0.29
Cr −0.56 0.62
S −0.38 0.44 0.61
ST −0.72 −0.11 0.57 −0.15

Number of observations: 44052.
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represents the measurement errors and the structures that were not
captured during sampling. Thus, in FKA, the variance–covariancematrix
that corresponds to the nugget structure is generally omitted during
analysis. The model input data were inferred for different spatial scales
by using the Eigen vectors of the PCA for the small-scale structure and
the PCA for the large-scale structure. Next, PLSR was used to quantify
how well the topographic attributes that were decomposed into the
small-scale and large-scale structures could reflect the variations in ST
that were also decomposed into the two structures. According to the
cross validation results, two PLSR components were appropriate when
modeling the relationships between ST for the small-scale structure
and the topographic attributes that were inferred from the small-scale
and large-scale structures. In addition, the VIP parameter indicated
that the S values for the small-scale structure contributed the most
to the ST variation in the small-scale structure model, followed by Cr
in the large-scale structure model. Finally, the PLSR model explained
76% of the ST variations for the small-scale structure andwas expressed
according to the unscaled regression coefficients of the predictor
variables and a constant that was transformed from the PLSR results
(Table 4, first line: termed Model-S in the sequel of the manuscript).

When modeling the relationships between ST for the large-scale
structure and with topographic attributes that inferred at the small-
scale and large-scale structures, the cross validation results indicated
that only one PLSR component was appropriate when modeling. In
addition, the VIP parameter indicated that the S values at the small-
scale structure and the C values at the large-scale structure mainly
contributed to model the ST variation for the large-scale structure. The
PLSR model, which is expressed based on the predictor variables and
a constant transformed from PLSR results (Table 4, last line: termed
Table 4
Standardized and non-standardized coefficient values of the PLSRmodels according to the
spatial scale. ST: soil thickness; S-short: slope gradient at small-scale structure; Cr-long:
profile curvature at large-scale structure; and C-long: curvature at large-scale structure.

Variable Standardized coefficient Non-standardized coefficient R2 (%)

(a) ST at the small-scale structure versus the topographic attributes
Constant 3.96 76
S-short −0.99 1.38
Cr-long −0.27 −4.82

(b) ST at the large-scale structure versus the topographic attributes
Constant 2.58 94
S-short −0.68 −0.97
C-long −0.49 −5.07
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Fig. 4. The soil thickness (ST) values of the validation set versus the ST values that were
inferred by (a) Model-S and (b) Model-L.



Table 5
Comparison of ST values inferred by the Model-S and Model-L with the ST values of the
validation set. ST: soil thickness.

N Min Max Mean Std ME RMSE R

STmeasured value (m) 148 0.25 2.23 0.70 0.39
ST from Model-S (m) 148 0.25 2.09 0.71 0.40 −0.01 0.15 0.92
ST from Model-L (m) 148 0.28 1.62 0.66 0.32 0.04 0.18 0.88
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Model-L in the sequel of the manuscript), explained 94% of the ST vari-
ations for the large-scale structure.

4.3. Evaluation of model performances based on the validation data set

Two sets of ST values were inferred from the models summarized in
Table 4. These ST values were compared to the ST values in the valida-
tion set (148 points) that were collected across the 17 ha area. The dif-
ferences between themodels were not clear according toME, RMSE and
the correlation coefficient (R) (Fig. 4 and Table 5). Nevertheless, Table 5
indicates that the model based on small-scale structure analysis
(Model-S) has reproduced bettermean and extreme values. In addition,
the variance observed in the measured values of the validation set
was better reproduced in this model than in the model based on the
large-scale structure analysis (Model-L). Thus, the Model-S is more
(a)

(c)

Fig. 5. The ST values inferred by Model-S and Model-L by using explanatory variables that we
(b) Model-L-LiDAR-Strict; (c) Model-S-LiDAR-Large; and (d) Model-L-LiDAR-Large.
appropriate for predicting soil thickness across the 17 ha study area.
According to the statistics exhibited in Table 4, this result was not
expected. Model-L explained more of the ST variability than Model-S.
This finding likely resulted from the importance of the main predictor
variable ‘S’ in Model-S relative to Model-L (Table 4). Consequently,
Model-L was potentially more sensitive to variations in the second pre-
dictor variable, C, relative to Model-S. In addition, Model-S should be
less sensitive to the variations of the second predictor variable, Cr, due
to the weight of the first predictor variable, S.

4.4. Validity of themodelswith respect to the DEM source and extrapolation

The two scenarios addressed for testing the validity of the models
regarding their ability to map ST using explanatory variables derived
from a LiDAR survey have resulted in the maps presented in Fig. 5.
The validation results (Fig. 6) revealed that applying Model-S to the to-
pographic attributes derived from LiDAR according to the first scenario
(Model-S-LiDAR-Strict: Fig. 6a) resulted in better predictions than the
other three situations (Fig. 6b–d). All statistical indicators listed in
Fig. 6 are for Model-S-LiDAR-Strict. In addition, the analysis of variance
(ANOVA) that was conducted on the residuals of each case (Table 6)
showed significantly influence of the model used on the residuals be-
cause the F-ratio was significant. Thus, we concluded that the models
significantly differed regarding their effects on residuals. However, we
(b)

(d)

re derived from LiDAR according to two scenarios as follows: (a) Model-S-LiDAR-Strict;
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Fig. 6. Soil thickness (ST) values for the validation set plotted against the ST values thatwere inferred fromModel-S andModel-L by using the explanatory variables thatwere derived from
LiDAR and according to two scenarios as follows: (a) Model-S-LiDAR-Strict; (b) Model-L-LiDAR-Strict; (c) Model-S-LiDAR-Large; and (d) Model-L-LiDAR-Large.
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were unable to determine which groups differed based on the ANOVA
results. To examine specific group differences, we used the Dunnett
pairwise mean comparison method. The results of this comparison
(Table 7) allowed us to conclude that the residuals obtained with
Model-S-LiDAR-Strict (Fig. 6a) were significantly lower than the resid-
uals that were obtained from the other three situations. Furthermore,
Fig. 6 and the associated statistical criteria indicated that Model-S per-
formed better relative to Model-L in all situations.

Model-S was extrapolated by using predictor variables that were
derived from the DEM acquired by DGPS over the 17 ha of the study
area. In addition, Model-S was used to map ST (Fig. 7a) by applying it
Table 6
ANOVA of the residuals according to the model used to predict soil thickness.

Source of
variation

Sum of
squares

Degrees of
freedom

Mean
square

F-ratio Pr (F)

Model 10.805 3 3.602 49.07 b0.0001
Error 37.727 514 0.073
Total 48.532 517
to topographic attributes that were derived from the LiDAR over areas
of 3 km2. The validation results (Fig. 7b) that used a data set of 231
individuals (Fig. 7c) indicated that the extrapolation of Model-S using
topographic attributes derived from LiDAR provided comparable results
relative to those presented in Fig. 6c. For Fig. 6c, the model was applied
using similar conditions but over a restricted area. These results are
important regarding the extrapolation of a model that was established
over a small area to a large area where the response variable is sparse
and the predictor variables are exhaustively sampled, but potentially
tainted by measurement errors or lower accuracy.
Table 7
The Dunnett pairwise mean comparison of residuals that resulted from the models that
were used to predict soil thickness. (1) Model-S-LiDAR-Strict; (2) Model-L-LiDAR-Strict;
(3) Model-S-LiDAR-Large; and (4) Model-L-LiDAR-Large.

Modality Difference Standardized
difference

Critical
value

Critical
difference

Pr N Diff Significant

1 vs 3 −0.114 −3.346 2.340 0.080 0.003 Yes
1 vs 4 0.250 7.342 2.340 0.080 0.000 Yes
1 vs 2 0.136 3.733 2.340 0.085 0.001 Yes
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Fig. 7. Extrapolation of the model over a large area: (a) Mapping of the ST by extrapolation of Model-S by using the topographic attributes derived from LIDAR; (b) Mapping validation
results based on an independent data set; and (c) Validation set: global sampling pattern.
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5. Conclusions

The geostatistical approach developed in this study based on fac-
torial kriging analysis allowed us to identify relevant relationships
among scale, the variable of interest and the auxiliary information.
Regardless of scale, STwas related to the small-scale structure of the pri-
mary topographic attributes such as slope, and to the large-scale struc-
ture of the secondary topographic attributes such as profile curvature.
Our findings indicate that the nugget variability of the considered vari-
ables must be removed. This decomposition process is associated with
a modeling approach, such as PLSR, which accounts for collinearity
between the predictor variables and leads to an efficient prediction
model. Both of the developed models explained a large proportion of
the soil thickness variation as a function of the topographic attributes.
Nevertheless, the validation results indicated that the model based on
small-scale structure (Model-S) was better at predicting soil thickness.
In addition, these results stressed the sensitivity of the developed
models to variations in the secondary topographic attributes derived
from the DEM, such as curvature. This finding is particularly true
when theweight of the secondary topographic attribute is more impor-
tant or equivalent to the weight of the primary topographic attribute
(e.g., S) in the model. Thus, our results indicate that a high coefficient
of determination value does not necessarily guarantee better prediction
when the model is tested using an external validation data set.

The ability of Model-S to map soil thickness was confirmed by using
predictor variables that were derived from LiDAR. In addition, the
extrapolation of Model-S beyond the area where it was generated
appeared relevant. This finding has important implications formodeling
soil properties according to topographic attributes and the spatial gen-
eralization of a model established over a small area where all data are
precise, to a large area where the target variable is sparse and the pre-
dictor variables are exhaustive and less precise.
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