

Ondrej BÁBEK^{1,2}, Tomáš MATYS GRYGAR³, Martin FAMĚRA¹, Karel HRON⁵, Tereza NOVÁKOVA⁴, Jan SEDLÁČEK¹

¹ Dept Geology, Palacky University of Olomouc, Czech Republic

- ² Dept of Geological Sciences, Masaryk University of Brno, Czech Republic
- ³ Inst Anorganic Chemistry, AV CR, v.v.i., Řež, Czech Republic
- ⁴ Dept Geochemistry, Mineralogy and Mineral Resources, Charles University of Prague, Czech Republic

Toxic compounds in fluvial settings

- Toxic compounds (toxic metals, persistent organic pollutants /POPs/, radioactive pollutants) are bound to:
 - (mineral) particulate matter \rightarrow hydrodynamic energy
 - organic matter; particulate, degraded in situ \rightarrow redox potential, hydrodynamics
 - Diagenetic phases, remineralized organic matter → redox, water table, geochemistry of host rock
 - ... all sensitive to environmental settings
- Fluvial depositional environments are everything but uniform and homogeneous, because:
 - decreasing hydrodynamic energy along river graded profile
 - non-uniform discharge (floods) → rivers are "jerky conveyor belts"
 - surface morphology of natural fluvial depositional settings, and
 - complex architecture of fluvial sediments
 - **anthropogenic influence** (deforestation, embankment, stream streightening, dredging, dams)

Therefore, fluvial sedimentary archives of anthropogenic contamination are highly complex

... but too often they are the only ones at hand

- Distribution of contaminants in space (and time)
 - Identification of dangerous "STORED WASTE"
 - Tracing SOURCES of contamination
 - Risk of REMOBILIZATION
 - HISTORY of contamination and river proceses (human and natural history)
 - The AMOUNT of contaminants

Vertically aggrading lacustrine sediments "simple architecture"

River Morava, Czech Republic

- tributary of Danube River
- Catchment area: 7891 km²
- Average annual discharge: 55.4 m³.s⁻¹

Industrial impact

Certak Meander – artificial abandoned meander

- Channel reloading in 1930s
- dredging in 1981

Certak meander

Permanent communication with active channel

"delta" \rightarrow sediment wedge

series of cores in proximal \rightarrow distal transect

PROXIMAL \rightarrow **DISTAL**

Event-like sedimentation

- RTG densitometry
- Magnetic susceptibility
- VIS spectral reflectance
- Coarse- and finegrained laminae
 → Flood layers

Proximal - distal core correlation

-LINEAR SEDIMENT ACCUMULATION RATES

Simple layer-cake geometry; depth proportional to time

Al-normalized element concentrations

• Increased contrast of flood vs. background sedimentation \rightarrow

something wrong with Al-normalization

River conveyor belts are indeed jerky ! And so is the record !

Laterally accreting fluvial sediments "complex architecture"

Geomorphology

- Morava River floodplain (in red), slope gradient map
- floodplain size: ~80 km (length) x
 ~13km (max. width)
- Very low slope gradient (< 0,15°)

Methods

- Percussion drill-cores
- Shallow geophysics: Electrical resistivity tomography (ERT), dipole EM profiling (DEMP)
- Multiproxy analysis
- geochemistry

Natural meander, freshly abandoned

First electrode is located at 0.0 m. Last electrode is located at 77.5 m.

- ERT profile, core control
- Point bar: sand-gravel, resistivity 350 – 550 ohm.m
- Abandoned meander: silts, clays: resistivity 10 – 50 ohm.m
- Floodplain: silts, clays: resistivity
 60 80 ohm.m

Filled-up meander

Olomouc – "Bázler sand pit"

- Abandoned meander, now completely filled
- Vegetation signs
- Electrical conductivity map
- Resistivity profile

Facies model, Morava River

Sandy meandering system

- Channel reloading and meandering
- AMS ¹⁴C dates: 0.13 6.14 kyr BP
- Depth range: 0.76 3.3 m, lack of superposition

LA : lateral accretion deposits CR : crevasse channels CS : crevasse-splay sediments FF : floodplain sediments CH(FF) : abandoned meanders Continuous recycling of floodplain deposits due to meandering (younger Atlantic – industrial revolution) age (kyr)

"Deeper is older" can be a misconception in floodplains

Floodplain core: Pb contaminated or not ?

- Increase of MS, Rb and Pb/Rb in soil (normalized to Rb) contamination
- Zone of fluctuating water table, cca 80 120 cm ("reductiomorphic zone")
- Increased MS, reddness index, Fe/Rb and Pb contamination diagenetic precipitation of Fe- oxyhydroxides

Even greater complexity due to post-sedimentary processes

Geochemical background and anthropogenic contamination:

What is polluted and what is not ?

effect of depositional setting / grain size

Sampling in floodplain deposits

- **River channels** (3 sites)
- **Floodplain** (5 sites)
- **Dammed reservoirs** (14 sites)
- Oxbow lakes (3 sites)
- River Morava and tributaries (Svratka, Dyje, Hloučela)
- Drill core at each site
- Total 576 samples
- EDXRF analysis (rapid and inexpensive)
- Known contamination from previous studies
- Local vs regional background and contamination

Sampling in floodplain deposits

- **River channels** (3 sites)
- Floodplain (5 sites)
- **Dammed reservoirs** (14 sites)
- Oxbow lakes (3 sites)
- River Morava and tributaries (Svratka, Dyje, Hloučela)
- Drill core at each site
- Total 576 samples
- EDXRF analysis (rapid and inexpensive)
- Known contamination from previous studies
- Local vs regional background
 and contamination

Sampling in abandoned meander deposits

- **River channels** (3 sites)
- **Floodplain** (5 sites)
- **Dammed reservoirs** (14 sites)
- Oxbow lakes (3 sites)
- River Morava and tributaries (Svratka, Dyje, Hloučela)
- Drill core at each site
- Total 576 samples
- EDXRF analysis (rapid and inexpensive)
- Known contamination from previous studies
- Local vs regional background
 and contamination

Sampling in channel deposits

- **River channels** (3 sites)
- **Floodplain** (5 sites)
- **Dammed reservoirs** (14 sites)
- Oxbow lakes (3 sites)
- River Morava and tributaries
 (Svratka, Dyje, Hloučela)
- Drill core at each site
- Total 576 samples
- EDXRF analysis (rapid and inexpensive)
- Known contamination from previous studies
- Local vs regional background and contamination

Geochemical meaning of grain size : normalizing of target elements (pollutants) to

lithogenic grain-size sensitive elements

Al/Si: a useful geochemical proxy of grain size:

- AI carried mainly by phyllosilicates, fine-grained fraction; Si carried mainly by quartz and feldspar grains, coarse fraction
- <u>Al/Si vs cation exchange</u>
 <u>capacity</u> (CEC) proxy of presence of clay minerals

• It is useful to normalize target elements to AI to filter out the effects of changing grain size

Element groups: PCA

PCA on raw (closed) data:

- (1) Rb, K, Al, Ti, Fe: lithogenic elements carried by fine-grained sediment fraction → suitable for normalizing
- (2) Si: lithogenic element carried by coarse-grained sediment fraction, anticorrelates with group (1)
- (3) Pb, Zn, Cu, Cr: elements at least partly related to anthropogenic contamination → toxic target elements
- We are looking for the best normalizing element

Variation of lithogenic element concentrations across depositional environments

Tukey boxplots of element concentrations and element ratios (Al/Si; Al, Ti)

 Lithogenic elements across depositional environments (coarse-grained channel fill /F1/ through to distal dam reservoirs)

• We are looking for the best **Titanium is the best proxy of** grain size

"Local" testing for the best lithogenic denominator is needed, it is not always Al !

Background functions of Ti-normalized concentrations (Pb, Cu, Zn, Cr):

Distinct data structure:

Regions of linear covariance of Pb,Zn,Cu,Cr with Ti \rightarrow lithogenic concentrations

Outliers \rightarrow added (anthropogenic) concentrations

How to separate these two regions ?

What is the meaning of baseline ?

- **Pre-industrial concentrations ?**
- Average grain size ?
 - \rightarrow interpretation first, then calculation of EFs or
- \rightarrow first calculation and then
- \rightarrow looking for suitable statistical

Geochemical background and threshold: a statistical approach

Soil data

- Histogram
- Density scattergram
- Tukey box-andwhisker plot

Background + threshold

- Mean +/- 2σ
- Median +/- 2σ
- Median + upper and lower whisker

Outliers → geochemical anomalies

C. Reimann et al. / Science of the Total Environment 346 (2005) 1-16

Graphical representation of background function: Pb vs Ti scatter plots + boxplots

Pb concentrations

Graphical representation of background function: Pb vs Ti scatter plots + boxplots

Pb / Ti ratios

Graphical representation of background function: Pb vs Ti scatter plots + boxplots

EFs Pb/Ti, robust LTS regression

LTS (least trimmed squares) regression diagnostic plot

Pb / Ti ratios

LTS regression is a safe, objective method for baseline calculation

Smoothing of Pb vertical trends due to grain

size

Geochemical data are always closed (sum up to unity); danger of "spurious correlation"

Log-ratio approach to geochemical background

Geochemical data are always closed (sum up to unity); danger of "spurious correlation"

Log-ratio approach to geochemical background

... take-home messages:

- subsurface sediment architecture critical
- water table depth
- geophysical and petrophysical tools
- "safe depth" for definition of local geochemical background can be dangerous misconception
- objective statistical tools: LTS regression, logratio analysis

Thank you very much !