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Abstract:

This paper investigates three categories of models that are derived from the equilibrium temperature concept to estimate water
temperatures in the Loire River in France and the sensitivity to changes in hydrology and climate. We test the models’ individual
performances for simulating water temperatures and assess the variability of the thermal responses under the extreme changing
climate scenarios that are projected for 2081–2100. We attempt to identify the most reliable models for studying the impact of
climate change on river temperature (Tw). Six models are based on a linear relationship between air temperatures (Ta) and
equilibrium temperatures (Te), six depend on a logistic relationship, and six rely on the closure of heat budgets. For each
category, three approaches that account for the river’s thermal exchange coefficient are tested. In addition to air temperatures, an
index of day length is incorporated to compute equilibrium temperatures. Each model is analysed in terms of its ability to
simulate the seasonal patterns of river temperatures and heat peaks. We found that including the day length as a covariate in
regression-based approaches improves the performance in comparison with classical approaches that use only Ta. Moreover, the
regression-based models that rely on the logistic relationship between Te and Ta exhibit root mean square errors comparable
(0.90 �C) with those obtained with a classical five-term heat budget model (0.82 �C), despite a small number of required forcing
variables. In contrast, the regressive models that are based on a linear relationship Te = f(Ta) fail to simulate the heat peaks and are
not advisable for climate change studies. The regression-based approaches that are based on a logistic relationship and the heat
balance approaches generate notably similar responses to the projected climate changes scenarios. This similarity suggests that
sophisticated thermal models are not preferable to cruder ones, which are less time-consuming and require fewer input data.
Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

River temperature is a key parameter for the ecological
responses of aquatic organisms. Not only does this
parameter influence the O2 content of water (Sand-Jensen
and Pedersen, 2005), but it also affects the consumption
rates of nutrients by organisms, potentially leading to
alterations in water quality during instances of increasing
temperatures. Warming also modifies the distributions
and dynamics of aquatic species across hydrographic
networks (Eaton and Scheller, 1996; Boisneau et al.,
2008). For example, recent climate warming enhances
thermal stress for fish populations and tends to restrict their
summer habitats drastically (Headrick and Carline, 1993).
River temperatures are driven by both natural and

anthropogenic factors. The main natural factors have been
thoroughly identified. These factors include incoming
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radiation; microclimatic features (Johnson, 2003), such as
wind sheltering, shadowiness (e.g. St-Hilaire et al., 2000)
and local humidity deficits that are related to surrounding
reliefs, the shapes of valleys, and river widths; and catchment
topography and stream orientations (Sridhar et al., 2004) that
determine spatial patterns in river temperature changes,
which may differ significantly from those of driving
meteorological variables (Webb et al., 2008). Other factors
are groundwater inputs (e.g. chalk streams; Mackey and
Berry, 1991); cold-water sources from melting snow;
hydrological features, such as the mean river depths
associated with river flows (e.g. the Loire River; Moatar
and Webb et al., 2003; Gailhard, 2006; Webb and Nobilis,
2007) and their regulation (Webb and Walling, 1997); the
residence times within a hydrographic network (e.g. Gu and
Li, 2002); and river’s connectivity with a hyporheic zone
(Evans and Petts, 1997; Hannah et al., 2009). Anthropogenic
influences are associated with disturbances in rivers’
hydraulics (e.g. manmade levees: Bartholow et al., 2004;
regulating reservoirs: Webb andWalling, 1997; Poirel et al.,
2009), warm-water input from wastewater (Kinouchi et al.,
2007) and/or power plants (Poulin, 1980), forest clearing
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(Sridhar et al., 2004; Moore et al., 2005), and anthropogenic
global warming that affects hydrological regimes and near-
surface meteorological variables (Mohseni et al., 1999).

A broad range of thermal models for rivers

Several modelling approaches are commonly employed
to simulate river temperatures. Statistical models (e.g.
Mohseni et al., 1998; Webb et al., 2003; Caissie et al.,
2005; Ducharne, 2008) are based on variables that are
correlated with water temperatures. Air-to-water relation-
ships are commonly used, but many other variables may
be included, such as geomorphic, riparian, and catchment
characteristics (Wehrly et al., 2009). New statistical
approaches have been tested recently, including spectral
analysis (Steel and Lange, 2007), geostatistical methods
that are based on the analysis of temporal covariance
structures (e.g. Gardner and Sullivan, 2004), evolutionary
polynomial regressions (Giustolisi et al., 2007), and
artificial neural networks (Sivri et al., 2007; Chenard and
Caissie, 2008; Bélanger et al., 2005). Stochastic
approaches use autoregressive techniques that account
for the departure of river temperatures from seasonal
standards and have also been widely applied (e.g. Caissie
et al., 1998) since the pioneering work of Cluis (1972).
Deterministic models consist of attempts to solve the heat
budget equation (e.g. St-Hilaire et al., 2003; Caissie et al.,
2007). These methods are intensively applied to studying
the thermal regimes of individual stream reaches, but their
implementation requires reach-specific input data, such as
the stream geometries of hydrological features, which are
rarely available. However, these methods are widely used
to investigate the impacts of climate change and other
anthropogenic pressures (e.g. forest harvesting, river
restoration, and dam building) on the thermal regimes
of river reaches with a particular attention to thermal
refugia (Sinokrot et al., 1995; Burkholder et al., 2008).
These models typically account for five heat terms that
are linked directly to climate: net solar radiation,
atmospheric radiation, long-wave radiation emitted by
water, air–water convection (or sensible heat flux), and
evaporation/condensation (or latent heat flux). The
calculation of these terms depends on several near-surface
meteorological variables: air temperature, air humidity,
wind speed, and global and atmospheric radiation. This
suite of intensive input data is frequently not available
and led to the development of simplified models.

The equilibrium temperature concept

Thermal modelling may be achieved via the equilibrium
temperature concept (Edinger, 1968), which is recognized
as an appealing way to simulate river temperatures (Caissie
et al., 2005). The two central variables are the equilibrium
temperature (Te) and the heat exchange coefficient (Ke). The
equilibrium temperature (Te) is defined as the water
temperature (Tw) at which the net rate of heat exchange at
the interface of the water body is 0. The thermal exchange
coefficient (Ke) is the rate at which the water temperature
responds to heat exchange processes. Te can be deduced
Copyright © 2012 John Wiley & Sons, Ltd.
from the aforementioned meteorological variables, but it
also can be approximated as a function of air temperature
(Mohseni et al., 1998; Caissie et al., 2005). Te may be
defined empirically with a small number of forcing variables
(e.g. air temperature only), which allows one to overcome
the frequent issue of near-surface meteorological variables
being not entirely available or poorly estimated. The latter
case may apply not only to long-term historical time series
but also to climatic projections. For example, Räisänen
(2007) argued that the agreement on recent changes in air
temperature, which is simulated by 21 general circulation
models (GCMs), is much stronger than the consensus for
any other meteorological variable.
Under the simplifying hypothesis that Ke is constant over

the course of a day, the equilibrium temperature concept
enables the assessment of the short-term variability of each
temperature (subdaily) with reasonable calculation require-
ments (Edinger et al., 1968) that are less numerous than
those of the classical 0D physically based model.Moreover,
these concepts provide an efficient tool for achieving
thermal modelling with low-frequency forcing data because
the data can be rearranged into an explicit equation that is
straightforward to solve and is unconditionally stable.
Because air temperature (Ta) is a good predictor of water
temperature (e.g. Stefan and Preud’homme, 1993; Webb
andNobilis, 1997; Caissie et al., 1998; Ducharne, 2008) and
thus of equilibrium temperature, several regression-based
approaches are employed to account for the Te = f(Ta)
relationships. The investigations from Caissie et al. (2005)
on the Catamaran Brook in Canada suggest that in this
specific case, the equilibrium temperature Te might
reasonably be assessed by means of a linear relation with
air temperature and that the thermal exchange coefficient
might be considered constant. However, when these
simplified methods are applied to input data very distinct
from those involved in the calibration of the model, it is
questionable whether they indeed remain valid. Mohseni
et al. (1998) showed that the air-to-water temperature
relationship calculated with weekly datasets departs from
linearity above 25 �C, and therefore, the method proposed
by Caissie et al. (2005) is not applicable for this range of
temperature. This feature is a critical issue for the accurate
prediction of thermal impacts, whether from climate change,
from microclimatic changes associated with the clear-
cutting of riparian forests, or from the drastic modifications
of hydrological regimes that are related to climate change,
for example, agricultural pressures or dam building.
Objectives

To assess the capacity of simplified models (i.e. those
forced with a limited number of input data with a
parsimonious structure and a few parameters to calibrate)
to reliably simulate the thermal regimes of rivers, we
tested three types of models. Two of these models are
regression based, with equilibrium temperatures being
determined by means of empirical air-to-water relation-
ships (linear vs logistic), and the third is physically based,
with the equilibrium temperatures being computed by the
Hydrol. Process. 28, 1507–1524 (2014)
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closure of the heat balance equation. These three categories
of model are divided into several variants, depending on the
following: (1) the computation of the heat exchange
coefficient (constant, as a function of water temperature,
and as a function of water temperature and wind speed) and
(2) the computation of equilibrium temperatures (the
variable number of input data and the method of computing
long-wave incoming radiation). The testing domain is a
plain river named the Middle Loire River, which is
particularly well suited for this study, as it exhibits higher
summer temperatures in recent records (>30 �C in August
2003) related to severe droughts (e.g. rainfall below 10mm
for August 2003 in the plain area) and very hot air
temperatures (e.g. Ta> 39 �C in August 2003). Climate
projections for the 21st century indicate increasing
occurrences of hot and dry conditions compared with
2003 (Moatar et al., 2010).
The main questions that are addressed in this paper are

the following:

1. How do tested models perform in simulating the
temperatures of a lowland river in terms not only of
daily averages but also of seasonal fluctuations and
heat peaks? Note that river temperatures are simulated
at a daily time step, unlike previous studies that have
used the equilibrium temperature concept and provided
simulations under presumed stationary conditions at
weekly time steps (e.g. Bogan et al., 2004). Specific-
ally, three methods for computing heat exchange
coefficients are compared to assess their capabilities
to account for the thermal inertia of the river.

2. How well are heat peaks simulated by each model? To
address the individual sensitivity of each model variant
to extreme hydrometeorological forcing variables, we
performed two complementary analyses. The first
approach uses observed water temperatures for the year
2003, which exhibited the warmest values (in air and
water) in the last 35 years. The second analysis uses
temperatures simulated by hydrological and thermal
modelling that was forced with a climate change scenario
based on a downscaled GCM projection of the A2
scenario of greenhouse gas release.

Overall, this analysis aims at determining themost reliable
models for forecasting the impacts of climate change on the
thermal regimes and heat peaks of temperate large rivers.
STUDY SITE

As the largest river in France, the Loire River is 1020 km
long and drains a catchment area of 117 000 km2 that is
characterized by varying climates and lithologies. This river
also experiences an irregular flow regime, including severe
droughts. The monitoring station is at Avoine, which is
located approximately 800 km downstream from the Loire
River’s source, approximately 340 km downstream from its
confluence with the Allier River (14 300 km2) and 30 km
downstream from its junction with the Cher River
Copyright © 2012 John Wiley & Sons, Ltd.
(13 700 km2). At this point, the Loire River drains an area
of 60 000 km2. It should be noted that because of the vicinity
and morphological similarities of their lower reaches, the
Cher River and the Loire River undergo comparable
meteorological forcing conditions across the 100-km reach
upstream from their confluence, thus leading to similar
responses in terms of river temperature.
The water temperature for the upstream reach of the

Middle Loire River is expected to be influenced by
advective heat fluxes involving water with distinct thermal
features that comes from upstream mountainous areas (e.g.
Massif Central). In contrast, the intermediate and down-
stream reaches of theMiddle Loire River, which are 340 km
long and have a low river slope (approximately 25 cm/km)
and an anabranching pattern (Claude et al., 2012), are
favourable for the convergence of water temperatures
towards an equilibrium temperature. As the advective heat
fluxes exert a notably slight influence on the thermal
regime of the Loire River at its downstream reach, the
station of Avoine appears well suited for comparing the
performances of water temperature models that are based
on the equilibrium temperature concept.
Although the temperature of the Middle Loire River is

influenced mainly by thermal exchanges with the atmos-
phere, there are two additional heat sources that might
diversely influence the thermal regime in the studied reach:

1. A heat flux related to river–groundwater exchanges
(Gonzalez, 1993; Moatar and Gailhard, 2006) that
involves the Beauce aquifer and the Val d’Orleans
hydrogeological system (Albéric and Lepiller, 1998;
Albéric, 2004). This flux is sensitive mostly between
Orleans and Blois, and it can then be overlooked at
Avoine a priori, as it is far downstream from the
groundwater-fed reach (140 km).

2. The heat supplied by the cooling water from three
nuclear plants located upstream from Avoine: St
Laurent-des-Eaux (140 km upstream), Dampierre
(230 km upstream), and Belleville (270 km upstream).
This effect can also be neglected, as the nuclear power
stations are equipped with closed-circuit cooling
towers that allow the heat to be dissipated directly
into the atmosphere. Thus, the thermal input into the
Loire River is notably low, with a discharge averaging
2m3/s by product unit. Studies conducted by the
electricity-generating authority (EDF) indicate that
rises in daily temperature of the Loire River down-
stream from the Dampierre power station have a
median of 0.1 �C and a 90th percentile of 0.3 �C, with
the greatest increase being in winter.

The EDF provided the water temperature data for the
station of Avoine, which is at an altitude of 35m and is
located a few hundred metres upstream from the warm
water that is released by the nuclear power plant of
Avoine–Chinon (Figure 1). The monitoring system con-
sisted of a floating platform with a sensor that measured the
water temperature at a depth of 20 cm (Moatar et al., 2001).
Examined and approved by EDF, the data allow for insight
Hydrol. Process. 28, 1507–1524 (2014)
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Figure 1. Map location of the study site of Avoine in the Loire River basin. The main hydrographic network and the delineation of the subwatersheds
used for hydrological modelling are represented
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into the impacts on river temperatures of warm water that
has been released by three upstream power plants.
MODELS AND DATASET

Background theory

Assuming that the river is thermally well mixed and
that there is no longitudinal temperature gradient, the
energy budget equation can be expressed as

@Tw
@t

¼

X
i

Hi

rw�Cpw�D tð Þ (1)

where Tw is the river temperature, t is the time, rw is the
water density, Cpw is the specific heat of the water, and D
(t) is the mean river depth at time t. The net heat flux ΣHi,
which results from the different heat exchanges across the
air/water interface, was calculated by

X
i

Hi ¼ Hns þ Hla � Hlw þ Hc � He (2)

where Hns is the net solar radiation, Hla is the atmospheric
long-wave radiation,Hlw is the long-wave radiation emitted
from the water surface, He is the evaporative heat flux, and
Hc is the convective (or sensible) heat flux exchanged with
the atmosphere.

The equilibrium temperature concept

The equilibrium temperature (Te) is the river temperature
if the net heat flux across the river interface is 0:

ΣHi¼0 (3)
Copyright © 2012 John Wiley & Sons, Ltd.
This net heat flux can be linearized as a function of
equilibrium temperature (Edinger et al., 1968) by stating
that the net rate of heat exchange is proportional to the
departure from the temperature equilibrium:

X
i

Hi ¼ Ke Te � Twð Þ (4)

The heat transfer coefficient Ke expresses the rate at
which water temperature responds to the heat exchange
processes. Combining Equations (1) and (4) leads to the
following equation:

@Tw
@t

¼ Ke� Te � Twð Þ
rw�Cpw�D tð Þ (5)

Equation (5) indicates that the rate at which the water
temperature approaches the equilibrium temperature
varies proportionally to Ke/D(t). This formula is the
fundamental equation for water temperature models that
are based on the equilibrium temperature concept. The
models that we tested (Table I) differ in their ways to
compute Te and Ke for solving Tw, which was calculated
at a daily time step by

Tw tð Þ ¼ Te tð Þ þ Tw t � Δtð Þ � Te tð Þ½ �

�exp
�Ke tð Þ

rw�Cpw�D tð Þ � Δt
� � (6)

where t is the time in seconds and Δt is the time step
expressed in seconds. This equation presupposes that Ke,
Te, and D are constant over the time step of integration
Hydrol. Process. 28, 1507–1524 (2014)



Table I. Daily models based on the equilibrium temperature concept

Method
Te

computation Data inputs

K �
e

K1 K2 K3

Regression-based (RB) Linear (L) Ta REG-L1-K1 REG-L1-K2 REG-L1-K3
Ta, DL REG-L2-K1 REG-L2-K2 REG-L2-K3

Logistic (S) Ta REG-S1-K1 REG-S1-K2 REG-S1-K3
Ta, DL REG-S2-K1 REG-S2-K2 REG-S2-K3

Heat balance (HB) ΣH= 0 Cld, Rg, U, RH, Ta HB-ea-K1 HB-ea-K2 HB-ea-K3
Ra, Rg, U, RH, Ta HB-Ra-K1 HB-Ra-K2 HB-Ra-K3
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(i.e. 1 day). Such a statement may seem dubious, especially
during summer when diurnal fluctuations of Te can be
substantial. However, as a preliminary test, we compared
simulations performed at daily and hourly time steps. Both
thermal simulations provide comparable outputs in terms of
mean daily water temperatures. The difference between
both simulations is substantially reduced [a root mean
square error (RMSE) of 0.31 �C instead of 0.58 �C] when a
backward finite difference approximation is used for Te,
leading to the equation employed thereafter:

Tw tð Þ ¼ Te tð Þ þ Te t � Δtð Þ½ �
2

þ Tw t � 1ð Þ � Te tð Þ þ Te t � Δtð Þ
2

� �

�exp
�Ke tð Þ

rw�Cpw�D tð Þ � Δt
� �

(7)

Finally, the accuracy of simulations that are based on
the constant values of Te, Ke, and D over the daily time
step is acceptable, with a level of accuracy comparable
with that of the recorded measurements (0.3 �C).

The heat exchange coefficient Ke. Three methods were
used to compute the heat exchange coefficient Ke, which is
as follows: (1) a theoretical formulation corresponding to
the sum of derivatives of heat terms with respect to water
temperatures, (2) an empirical linear relationship dependent
on the water temperature, and (3) a constant value.
Following Edinger et al. (1968), the heat exchange

coefficient Ke is theoretically determined by computing
�
X
i

@Hi=@Tw, thus leading to

Ke tð Þ ¼ 4:e:s� Tw tð Þ þ 273:15ð Þ3 þ f Uð Þ

�
�
0:62þ 6:11� 17:27� 237:3

237:3þ Tw tð Þð Þ2

�exp
17:27� Tw tð Þ
237:3þ Tw tð Þ

� ��

(8)

where Ke is expressed as watt per square metre per
Kelvin, Δt is the time step (s), and f(U) is the wind
function approximated by f(U) = aU �U+ bU with aU and
bU to be calibrated. To facilitate the interpretation of Ke,
Copyright © 2012 John Wiley & Sons, Ltd.
we computed the heat exchange coefficient for water, K�
e ,

Ke� tð Þ ¼ Δt
rw�Cpw

� Ke tð Þ (9)

where rw �Cpw= 4.181 � 106 J/m3/K and K �
e is given as

metres per day with Δt= 86 400 s, which corresponds to
the rate at which Tw converges with Te for a mean river
depth of D = 1m. For instance, K �

e ¼ 0:5m=day means
that e�0.5 = 60.6% of the thermal signal of the (t� 1)th
day is reported on the tth day if D= 1m, but if D= 5m, it
reaches e�0.5/5 = 90.5%. Preliminary tests indicated that
Equation (8) tends to underestimate the thermal inertia of
the water body, presumably because of the following: (1)
the nonstationarity of air humidity above the river that is
associated with evaporation processes and (2) the
considerable weight given to wind speed, which is
notably variable in space such that mean input data are
not representative of local conditions (i.e. above the river)
with respect to air turbulence (Morton, 1983).Moreover, the
complementary relationship of the areal evapotranspiration
model promoted by Morton (1983) posited that heat-
induced turbulence is preponderant over wind-induced
turbulence during periods of high evaporation. Thus, the
evaporation loss can be viewed as much less sensitive to
wind function. The heat exchange coefficientK �

e , therefore,
can be computed by using an empirical linear relationship
that includes only the water temperature,

K �
e tð Þ ¼ aK �Tw t � 1ð Þ þ bK (10)

where aK and bK are site-specific parameters to be calibrated
andK �

e is given as metres per day withΔt= 86400 s, which
can thereby be directly introduced into Equation (6) for
computing Tw(t). Notice that we use the water temperature
of the precedent day (t� 1) to avoid unnecessary iterative
computations. This approach to compute the heat exchange
coefficient is new because of the following: (1) the omission
of the influence of the wind and (2) the calibration of the
nature and magnitude of the control exerted by the water
temperature Tw, instead of being inferred from the slope of
the Clausius–Clapeyron relation (the second term of
Equation (8)). Actually, Equation (8) presupposes that
the air humidity (ea) over a water body is independent of the
river temperature, that is, @(ea)/@Tw=0. In light of the
aforementioned preliminary tests, we consider that this
assumption is questionable, at least, for the empirical
equation we proposed, and that, by nature, this concept is
Hydrol. Process. 28, 1507–1524 (2014)
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much less adaptable to site-specific contexts. Third, and
finally, we tested models with a constant Ke, as proposed
earlier by Caissie et al. (2005).

The equilibrium temperature Te. Three alternatives were
considered for computing Te: estimating Te as linear or
logistic functions of the air temperature Ta, which defines
the so-called regression-based approaches, and solving for
ΣiHi,j=0, which is a nonlinear equation with an unknown
river temperature Tw(t) that is solved by means of the
Newton–Raphson algorithm. The latter defines the heat
balance approaches (also referred to as HB). Two subsets
are distinguished depending on whether the atmospheric
radiation is calculated after calibration or if it is extracted
directly from the SAFRAN database (further details
concerning these subsets are provided in the dedicated
section ‘Meteorological and Hydrological Datasets’).

River depth D. To estimate the river depth, we analysed
the gauging curves for the station of Langeais and 11
cross sections along the reach of the Middle Loire River,
which led to the empirical relationship used thereafter that
relates the mean river depth (D) with the river discharge
(Q): D= 0.10�Q0.50.

Tested thermal models

As alternatives to the reference simulation (or the
REF), three categories of thermal model derived from the
equilibrium temperature concept were tested. The designs
of the simulations are presented in Table I. A distinction
is first made between the models relying on the closure of
the heat balance equation (HB-**-**) and the regression-
based models (REG-**-**), which are further subdivided
into linear and logistic models.

Regression-based approaches. Regression-based mod-
els estimate Te according to the air temperature Ta. The
subsequent relationship Te = f(Ta) can be either linear
(models noted as REG-L*-**), as proposed by Caissie
et al. (2005), or logistic (models noted as REG-S*-**), as
inferred from Mohseni et al. (1998) and Bogan et al.
(2004). The models of REG-L1-** are based on the
hypothesis that Te and Ta are linearly related,

Te tð Þ ¼ aTE:Ta tð Þ þ cTE (11)

where aTE and cTE are the parameters to be calibrated.
Furthermore, to account for the seasonal variations of
radiative input, we introduce an additional factor (day
length factor, or DL) that is a function of the day length
and that is expected to modulate the air/water temperature
relationship for the models REG-L2-**,

DL jð Þ ¼ cos
2p
365

� J þ 193ð Þ
� �

(12)

with J representing the Julian day number corresponding
to 1 (Jan 1) through 365 (Dec 31). The use of this proxy is
a major original feature of this study. DL explains most
Copyright © 2012 John Wiley & Sons, Ltd.
(76%) of the radiative input variability (shortwave and
infrared) but only 50% of the air temperature variability.
Therefore, this variable can be viewed as a pertinent
surrogate for radiative input when these data are not
available and not as a superfluous additional one that
provides redundant information with respect to air
temperature. DL varies between �1 (for Dec 21) and
+1 (for Jun 21). This factor is expected to account for the
nonuniqueness of the Te = f(Ta) relationship, which is also
influenced by incoming solar radiation. All other things
being equal, the equilibrium temperature should be
increasingly higher for the long-days/short-nights cycles
because nighttime cooling is reduced. The equilibrium
temperature is subsequently computed by means of a
multilinear equation with three parameters,

Te tð Þ ¼ aTE�Ta tð Þ þ bTE�DL tð Þ þ cTE (13)

where aTE, bTE, and cTE are site-specific calibrated empirical
coefficients. Finally, for each model REG-L*-**, we test
three distinct options to account for the thermal exchange
coefficient K�

e : the constant value (REG-L*-K1), the linear
relationship using Tw as a covariate (REG-L*-K2), and the
physically based formula (Equation (8)) for the models
(REG-L*-K3).
The same protocol is applied to the models that are

based on a logistic relationship of Te = f(Ta). For the
models REG-S1-**, Te is estimated by the following
equation, which defines a S-shaped curve,

Te tð Þ ¼ Tn þ Tx � Tn
1þ expg: b�Ta tð Þ½ � (14)

where Tn and Tx are the lower and upper bounds of the water
temperature, g is the slope at the inflection point of the
S-shaped curve defined by Equation (14), and b is the air
temperature at the inflection point. These four parameters
are site specific and must be calibrated. The consideration
of the concomitant influence of the day length leads to the
models RB-S2-**, with Te computed as

Te tð Þ ¼ Tn þ Tx � Tn
1þ expg� b�Ta tð Þ½ � þ l� DL tð Þ (15)

where l is the coefficient that accounts for the influence of
the day length.

The heat balance approach. The first step of the HB
consists of calculating Te as the hypothetical Tw for which
incoming heat fluxes and outgoing heat fluxes are
balanced (Equation (3)). The calculation procedures and
related assumptions are presented in Table II. The main
assumptions are as follows: (1) there is a temporally
constant albedo of the water body (6%), (2) there is no
light attenuation associated with riparian canopy and/or
topographical features, (3) there is a temporally constant
clear-sky atmospheric emissivity, following the prescrip-
tions of Gras et al. (1986), Moatar (1997), and Gosse et al.
(2008), and (4) there is an evaporation flux approximated
Hydrol. Process. 28, 1507–1524 (2014)



Table II. Rules for computing the five heat terms

Heat term Calculation procedure Assumptions Calibration

Net solar radiation (Hns) Hns = (1�Alb)�Rg� (1� SF) Alb = 0.06 (constant in time);
SF= 0 (large river)

—

Atmospheric radiation (Hla) Hla = 0.97 � ea �s � (Ta + 273.15)4
� (1 + 0.22 �Cld2.75)

ea = constant; s= 5.67 �
10�8W/m2/K4

ea

Long-wave emitted radiation (Hlw) Hlw = 0.97 �s � (Tw + 273.15)4 s= 5.67 � 10�8W/m2/K4 —
Convection (Hc) Hc =B � f(U) � (Ta� Tw) B= 0.62mb/K; f(w) = aW �W+ bW aU and bU
Evaporation/condensation (He) He = f(U) � (esw-ea) Magnus–Tetens approximation;

esw = 6.11� exp[17.27 �Tw/(237.3 + Tw)]

Alb, surface water albedo; Rg, global radiation (W/m2); SF, shadow factor; ea, clear-sky atmospheric emissivity; Ta, air temperature (�C); Cld, cloud cover
fraction; Tw, surface temperature of the water body; f(U), wind function; ea, water vapour pressure in air (mb); esw, saturation vapour pressure for Tw (mb).
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by a Dalton-like equation with a calibrated wind function
f(U). Two categories of model are distinguished: those that
use the atmospheric radiation data computed by SAFRAN
and employ a radiative transfer scheme (Quintana-Segui
et al., 2008) as input data (HB-Ra-**) and those that
compute these data by means of the Stefan–Boltzmann
equationwith a constant clear-sky atmospheric emissivity ea
(HB-ea-**), as reported in Table II. As for regression-based
models, three methods of computation for Ke were tested,
which led to the test of 2� 3= 6model variants based on the
closure of heat balance equation.
Meteorological and hydrological datasets

Near-surface meteorological data. Long-term time
series data for air temperature (Ta, 2m above the soil
surface in degree Celsius), specific humidity (SH, 2m
above the soil surface in kilogramme per kilogramme),
wind velocity (U, 10m above the soil surface in metres
per second), global radiation (Rg, in watts per square
metre), and atmospheric radiation (Ra, in watts per square
metre) are provided by SAFRAN. SAFRAN is a gauge-
based analysis system that combines atmospheric profiles
from the global-scale reanalyses of the European Centre
for Medium-Range Weather Forecasts with ground
observations to provide time series of near-surface
meteorological variables for climatically homogeneous
zones (Vidal et al., 2010). Optimal interpolation methods
were implemented to provide hourly data covering France
with an 8-km resolution for the period of 1970–2007. In
contrast to the other variables, atmospheric radiation has
not been validated because too few observations were
available (Quintana-Seguí et al., 2008). For simulations of
the future, the same meteorological variables were obtained
from the GCM Arpege (Gibelin and Déqué, 2003) as
constrained by the extreme A2 scenario of anthropogenic
emissions (Nakicenovic and Swart, 2000). The climatic
scenario was simulated over the period of 1950–2100with a
variable resolution refined over Europe, which led to a
resolution of approximately 50 km in the Loire River
basin. This scenario was further downscaled to the
resolution of the SAFRAN database with a weather
regime approach (Boé et al., 2006).
To force the thermal simulations, we used the

arithmetic average of the cells that are comprised within
Copyright © 2012 John Wiley & Sons, Ltd.
the subwatershed containing the station, as weighted by
the surface of each cell within the subwatershed. It should
also be mentioned that the wind speed (U), provided at
the 10-m height above the soil, was estimated at the 2-m
height using a logarithmic wind profile, which led to U2/
U10 = (2/10)

0.11 = 0.837.

Hydrological forcing. Discharge data were collected
from the French HYDRO database (www.hydro.eaufrance.
fr), which provided instantaneous and mean daily discharge
values (m3/s) and instantaneous river stages (in metres
above sea level). The mean daily discharges used as input
data for the present study are those measured at Langeais
(20 kmupstream fromAvoine).When the dataweremissing
or for climatic projections, the discharge was simulated by
the semidistributed hydrological model EROS (Thiéry,
1988; Thiéry and Moutzopoulos, 1995) within 34 sub-
watersheds (Figure 1) upstream fromAvoine (Moatar et al.,
2010). Each of the subwatersheds is assumed to be
homogeneous and is characterized in EROS by means of
four to six lumped parameters (e.g. soil capacity and
recession times) that were calibrated. The simulations of the
mean daily discharge were performed over the periods
1970–2007 (forced by SAFRAN) and 1950–2100 (forced
by the aforementioned downscaled climate scenario,
referred to as Arpege A2 in the rest of the paper).
The calibration and validation of EROS were per-

formed over the 1974–1990 and 1991–2007 periods,
respectively, excluding 3 years (1971–1973) for
initialization purposes. The agreement between the
simulated and observed discharges is rather strong
(Figure 2), with a Nash coefficient (computed with daily
values) of 0.85 for the calibration period and 0.80 for the
validation period, with a relative bias of 2%. EROS tends
to underestimate peak flows and, to lesser extent, low-
flow discharges. However, it should be noted that the
errors on high flows do not have any significant influence
on the outputs of 0D thermal models.
Regarding low flows below the tenth percentile of

observed discharge, the errors remain moderate and are
lognormally distributed with a right-skewed tail. Only 5% is
underestimated bymore than 40%, and 5% is overestimated
bymore than 76%. The fraction of discharge that is severely
overestimated results from the model’s tendency to
anticipate rising water stages.
Hydrol. Process. 28, 1507–1524 (2014)
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Figure 2. Simulated (SIM) and observed (OBS) discharge time series of the Loire River at the station of Chinon during 1999–2007. The simulated
discharge was computed with the EROS hydrological model forced with the SAFRAN meteorological analysis

Table III. RMSEs of the thermal models based on daily values
with 18 variants based on daily time-step simulations and two on

hourly time-step simulations (REF)

Model Data inputs

RMSE

K1 K2 K3 REF

Linear Ta 1.27 1.26 1.26 —
Ta, DL 0.92 0.91 0.91 —

Logistic Ta 1.24 1.23 1.23 —
Ta, DL 0.90 0.90 0.90 —

Heat Cld, Rg, W, RH, Ta 0.82 0.82 0.82 0.88
Balance Ra, Rg, W, RH, Ta 1.07 1.07 1.06 1.04

Calibration and validation periods are gathered.
REF, reference simulation; RMSE, root mean square error.
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We also examined to what extent these errors in
simulated discharge could influence the simulated water
temperature. To this end, the reference model was forced
either by observed discharge or by simulated discharge
over the period 1976–2007. These two approaches lead to
equivalent levels of performance (root mean square
deviation = 0.17 �C) and patterns (not shown).

Design of the simulations

As a REF, Equation (1) was solved to simulate the
temperature of the Loire River at Avoine, which was
based on an hourly meteorological dataset and used a first-
order finite difference explicit method at each hour. The
hourly values were later averaged to allow for a
comparison with the alternative thermal models that are
presented hereafter and are based on the equilibrium
temperature concept.
Apart from the REF, the simulations were performed at a

daily time step. The simulation period was divided into two
subdatasets: a calibration dataset that covered one third of
the overall time series (sampled randomly for the period
1977–2007) and a validation dataset that covered the
remaining years. The considered period, which covered
30 years (1/1/1977 to 7/31/2007), was marked by notably
severe summer droughts (1976, 1989, 1990, 1991, and
2003) and several heat peaks (especially in 1997 and 2003).
Very cold spells were observed in December 2001 and
January 2003.
For calibration purposes, a Levenberg–Marquardt

algorithm was employed to minimize the least squared
error between the modelled values of the river
temperature and the observed ones.
The performances of the models were assessed according

to four performance criteria, as computed from the daily
means of the observed and simulated temperatures for each
season and during the entire analysis period:

1. The temperature mean bias (Bm), which is defined here
for each Julian day by the difference between the
simulated (Tw) and observed (Tw,OBS) river tempera-
tures: Bm ¼ �Tw � �Tw;OBS
Copyright © 2012 John Wiley & Sons, Ltd.
2. The bias for the 90th percentile of the daily mean river
temperature established for the whole dataset, which is
represented by B90 ¼ T90

w � T90
w;OBS

3. The bias for the 99th percentile of the daily mean river
temperature established for the whole dataset, which is
represented by B99 ¼ T99

w � T99
w;OBS

4. The RMSE
COMPARED PERFORMANCES OF THE MODELS
OF 1977–2007

Interannual scale

Calculated with daily values, the differences in RMSEs
between the calibration and validation periods are notably
low (with 1.00 �C for calibration vs 1.05 �C for validation,
data not shown) and justify that model outputs from each
subset are gathered and presented together. The general
performances of the regression-based methods are notably
strong despite their simplicity. Themean overall RMSEs for
these models range between 0.90 and 1.27 �C (Table III).
In terms of performance, the hierarchy of methods is in

strong agreement with what is expected. Regression-based
methods are the least accurate, and heat balance methods
provide better results if the clear-sky atmospheric emissivity
is calibrated. The gain of performance when adding DL as a
Hydrol. Process. 28, 1507–1524 (2014)
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covariate to regression-basedmodelsmust be emphasized. In
such cases, these methods are almost as efficient as the heat
budget approach (HB), indicating that these simplified
formulations enable the capture of nearly as much
information as HB. This result also indicates that most of
the water temperature variance is related to air temperature
and day length. The REF (with the 0D heat budget equation
directly being solved at the hourly time step) leads to an
RMSE of 0.88 �C for the overall period when the
atmospheric radiation is calibrated (fixed ea), which increases
to 1.04 �C when using data for the observed atmospheric
radiation (from the SAFRAN database). This finding
suggests that the thermal simulations that use meteorological
data at an hourly time step are not necessarily more accurate
than those that are performed at a daily time step.
Seasonal patterns

The seasonality of errors is depicted by Figure 3. The
differences that arise from the ways to compute Ke are
notably small (Figure 3a) such that we only represented the
errors for each model variant **-**-K1 and for the REF.
Regression-based models that include air temperature as
the only covariate exhibit the same pattern of error: water
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use a daily time step and are compared with the reference simulation (REF), w

equation to compute the

Copyright © 2012 John Wiley & Sons, Ltd.
temperature tends to be severely underestimated in spring
and overestimated in fall and winter (Figure 3b).
The method used to estimate the equilibrium

temperature (linear vs logistic) seems of low importance
in regard to patterns in mean error. When the Julian day is
incorporated as a day length index and as a covariate
to assess Te, the seasonality of errors is fundamentally
modified: water temperature is slightly overestimated in
summer and is underestimated in fall (Figure 3c). The
same pattern is found for the REF and for the heat balance
models HB-**-K1 (Figure 3d). This common character-
istic of REG-L2, REG-S2, HB, and the REF might be
because of secondary heat inputs that are not accounted
for in this study, such as streambed heat fluxes (Bogan
et al., 2004) that tend to buffer warming or cooling trends
that are associated with climate forcing. Moreover, it
should be noted that the reference and HB-ea-**
simulations exhibit similar patterns of error, meaning
that the time step of computation does not modify the
model outputs substantially. In contrast, we observe a
distinct pattern for HB-Ra-** that simulates lower than
expected water temperature in winter, suggesting that the
atmospheric radiation provided by the radiative transfer
scheme may be underestimated.
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day for the overall dataset, 1977–2007): (a) six regression-based variant
ariant models with constant K�

e (REG-**-K1) and Te = f(Ta) estimated by
sion-based model variants, with constantK�

e and Te = f(Ta, DL) estimated by
heat balance models with a constant K�

e and the atmospheric radiation
sfer scheme (HB-Ra-K1). The model variants presented in (b), (c), and (d)
hich is performed at the hourly time step and uses the Stefan–Boltzmann’s
atmospheric radiation
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Heat peaks

If air temperature is the only input data, the linear
regression-based models largely overestimate the 99th
percentile of temperature (T99

w ) (Table IV). Incorporating the
day length as a second covariate (REG-L2-**) improves the
simulations.However, the heat peaks (T90

w andT99
w ) tend to be

slightly underestimated for REG-S*-** (Table IV), as it is
based on a logistic approximation of the equilibrium
temperature as a function of air temperature. The incorpor-
ation of day length as a second covariate in these models
does not influence the simulated temperature for heat
peaks substantially.
The logistic function relating Ta and Te implicitly

mimics evaporation cooling, such that REG-S* models
describe hot spells more accurately than do REG-L*
models. The most accurate simulations are provided by
the heat balance models. It also should be mentioned that
the way to compute K�

e does not strongly influence the
thermal simulations, except for the REG-L* models, in
which the tendency to overestimate water temperature is
enhanced for REG-L*-K3 (the theoretical computation of
K�
e ) and REG-L*-K2 (with a Tw-dependent relationship).
As a subsidiary test, we compared the thermal simulations

of the 18 model variants for the summer of 2003 (Figure 4),
recognized as thewarmest ever recorded in France. First, the
method to compute Ke does not seem to exert a strong
influence on the simulated patterns of temperature.
Considering a constant Ke over time tends to reduce the
magnitude of variations compared with other computational
strategies (K2 and K3), but this effect remains limited.
Therefore, we consider five pools of model variants that
provide comparable outputs for hot spells: REG-L1-**,
REG-L2-**, REG-S*-**, HB-**-**, and the REF.
The regression-based models REG-L1-** overestimate

the hottest temperatures by 1 to 3 �C, whereas those
incorporating DL as a predictor of Te, namely REG-L2-**,
Table IV. Compared performances of the 18 tested models and th
outlook on hot spells with tw

Model Te

Regression-based variant models L1

L2

S1

S2

Heat balance variant models ea

Ra

REF

B90 and B99 are the biases (�C) for the 90th and 99th percentiles of the da
REF, reference simulation.

Copyright © 2012 John Wiley & Sons, Ltd.
are in stronger agreement with observations (Figure 4a).
In contrast, the regression-based models REG-S*-**
(Figure 4b) tend to underestimate the magnitude of heat
peaks. Finally, the heat balance models HB-**-** and the
REF provide fair simulations of the river temperature for
the summer of 2003 (Figures 3d and 4c), although the
temperature tends to be slightly underestimated.

Calibrated parameters and their sensitivities

A crucial question regarding this methodology is
whether the equilibrium temperatures that are estimated
by linear (REG-L*-**) and logistic approximations
(REG-S*-**) are consistent with those calculated more
accurately by the HB.
Considering the heat exchange coefficient K�

e , we obtain
values ranging from 0.43 to 0.49m/day for the **-K1
models (TableV). As thewater temperature gets warmer,Ke

tends to increase, as inferred fromEquation (10). Depending
on the water temperature, posited as between 0 and 32 �C,
the heat exchange coefficient varies between 0.31 and
0.74m/day when using Equation (10) (i.e. Ke = f(Tw)) and
between 0.32 and 1.03m/day for the theoretically derived
Ke (Equations (8) and (9)), in consideration of a mean wind
speed of 3.3m/s. The discrepancies are larger at higher
temperatures, which suggests that the actual thermal inertia
of the river may depart from the theoretical one. This
discrepancy might be due to the local air humidity over the
water body, which limits the rate of evaporative loss.
Considering the equilibrium temperature for each

category of REG-**-K* model, we find that the linear and
logistic functions relating Ta and Te are notably close
(Table VI), regardless of the method of computation used
for K�

e . The incorporation of a second covariate to evaluate
equilibrium temperatures, namely,DL, appears to be useful.
The coefficient attributed to DL varies between 1.94 and
2.06, meaning that Te, as it is computed from air-to-water
e reference simulation (REF) over the period 1977–2007 and an
o criteria being investigated

Bias

K �
e

K1 K2 K3

B90 �0.2 �0.2 �0.2
B99 0.3 0.5 0.6
B90 �0.2 �0.2 �0.2
B99 �0.3 �0.1 �0.1
B90 �0.1 �0.1 �0.1
B99 �0.4 �0.4 �0.4
B90 �0.1 0.0 �0.1
B99 �0.4 �0.3 �0.4
B90 �0.1 �0.1 �0.1
B99 �0.2 �0.1 0.0
B90 0.0 0.0 0.0
B99 �0.1 0.0 0.0
B90 �0.1
B99 �0.1

ily mean river temperatures that were calculated for the entire year.

Hydrol. Process. 28, 1507–1524 (2014)
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Figure 4. Water temperature of the Middle Loire River, as simulated by 19 model variants and observed for July–August 2003: (a) six regression-based
model variants with a linear approximation ofTe; (b) six regression-basedmodel variants withTe = f(Ta) estimated byS-shaped relationships; (c) six heat balance
model variants with the atmospheric radiation computed by Stefan–Boltzmann’s equation (HB-ea-K*) or by a radiative transfer scheme (HB-Ra-K*); (d)
reference simulation (REF) based on 0D thermal model with a 1-h time step and a physically based heat balance approach (HB-ea-K3) with a 1-day time step.

The model variants presented in (a), (b), (c), and (d) are compared with the mean daily observed temperature (Tw,OBS)

Table V. Computation of the heat exchange coefficient K �
e for the 18 model variants tested

Te
computation Data inputs

K �
e (m/day)

K1

K2 (Equation (10)) K3 (Equations (8) and (9))

0 �C 13 �C 32 �C 0 �C 13 �C 32 �C

Linear Ta 0.46 0.O31 0.47 0.69 0.33 0.46 0.86
Ta, DL 0.44 0.35 0.45 0.61 0.32 0.44 0.83

Logistic Ta 0.49 0.32 0.49 0.74 0.34 0.48 0.90
Ta, DL 0.46 0.38 0.47 0.60 0.33 0.46 0.86

Heat balance Cld, Rg, U, RH, Ta 0.47 0.42 0.49 0.58 0.38 0.54 1.03
Ra, Rg, U, RH, Ta 0.43 0.40 0.44 0.50 0.32 0.45 0.85

The theoretically derivedK �
e is obtained by applying Equation (8)withU=3.3m/s, which corresponds to the averagewind speed observed for the studied period.

Table VI. Computation of the equilibrium temperatures Te for the 12 regression-based tested model variants

Te = f(Ta) Data inputs K �
e Calibrated equation

Linear Ta K1 1.11�Ta + 0.84
K2 1.11�Ta + 0.89
K3 1.11�Ta + 0.89

Ta, DL K1 0.92�Ta + 2.06�DL+ 3.16
K2 0.92�Ta + 2.01�DL+ 3.12
K3 0.92�Ta + 2.03�DL+ 3.18

Logistic Ta K1 �5.3 + 39.3/{1 + exp[0.12.(12.1� Ta)]}
K2 �6.7 + 40.7/{1 + exp[0.12.(11.5� Ta)]}
K3 �6.6 + 40.3/{1 + exp[0.12.(11.4� Ta)]}

Ta, DL K1 �6 + 42.8/{1 + exp[0.09.(13.4� Ta)]} + 2�DL
K2 �6.2 + 42.8/{1 + exp[0.09.(13.1� Ta)]} + 1.94�DL
K3 �7.3 + 43.7/{1 + exp[0.09.(12.4� Ta)]} + 1.98�DL
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equilibrium temperature relationships, should be corrected
by �1.94 to �2.06 �C for winter solstice and by +1.94 to
+2.06 �C for summer solstice.
When the HB approach is considered, the coefficients

calibrated for the wind function (aU and bU) differ slightly
from the values found elsewhere in the literature. We
calculated f(U) = 6.74 + 2.64 U2 for HB-ea-** and f
(U) = 5.8 + 1.73 U2 for HB-Ra-**, compared with, for
instance, Penman’s wind function of f(U) = 7.4 + 4 U2

from Brutsaert and Stricker (1979). This finding supports,
at least partially, the aforementioned claim of Morton
(1983) with respect to the specific microclimatic condi-
tions presiding over large water bodies. Conversely, the
clear-sky atmospheric emissivity ea is high (0.903). It is
questionable whether atmospheric aerosols contribute to
this enhancement of cloud emissivity (Garrett et al.,
2002) and/or if a buffering mechanism is indicated, for
example, the increasing contribution of secondary heat
source inputs (in addition to the five heat terms) when the
weather is cold. Several options are possible among which
are the urban heat island effect and wastewater and/or
industrial releases. It should also be mentioned that
preliminary simulations conducted via empirical equations
(e.g. Swinbank’s equation: Swinbank, 1963) for estimating
ea failed. Nonetheless, assuming a constant ea provides
strong results and is consistent with the findings
presented by Moatar (1997) and Gosse et al. (2008) for
the Middle Loire River. This apparent stability of
atmospheric emissivity might actually be observed because
the temperature-dependent fluctuations of atmospheric
emissivity were not balanced by the probable seasonality
of cloud emissivity (higher in winter and lower in summer),
as reported by Wylie and Menzel (1999) in the northern
midlatitudes. For cloudy conditions, Malek (1997) noted
substantial discrepancies between long-wave incoming
radiation that was computed from Brutsaert’s equation and
from observations, relating them to the seasonal fluctuations
of cloud-base height documented in Western Europe by
Warren et al. (2007).

The heat exchange coefficient and its relation with
microclimate. The poor quality of simulations obtained by
computing the heat exchange coefficient from a theoretical
formulation (Equation (8)) is striking. The empirical
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formulations that assume a linear relationship between Ke

and Tw or a constant value enable better descriptions of the
thermal inertia of the system. The range of variation of Ke

obtained by the linear relation is 0.2–0.8m/day, whereas the
theoretical formulation leads to 0:3 < K�

e < 1:2 m=day .
This difference suggests that the reference model might
overestimate the response of the river temperature to the
variations of climate forcing. These findings are illustrated
in Figure 5, in which hourly simulations from the REF
exhibit smaller diurnal variations than observations from the
very warm summer of 2003. In contrast, the diurnal
variations of river temperature are well described for the
summer of 2002 (Figure 5b), indicating that the way to
compute Ke is perfectible and that the possible biased
estimation of the river depth through D= f(Qt) relationships
cannot be invoked as the single possible cause.
In summer, the diurnal temperature ranges of the river

(Figure 6, in which only 2001 and 2003 are presented) that
are simulated by the reference model are occasionally well
described (for 2001, 2002, and 2004), but they can also be
largely overestimated (for 2003, 2005, and 2006). In our
opinion, this variation might be due to the staticness of air
humidity over thewater surface in cases of high atmospheric
stability. The heat exchange coefficient computed via
Equation (8) implies that the air humidity above the river
is constant in time. Given the width of the Loire River
(>200m), it is questionable to what extent the evaporation
of the water might influence the local air humidity. In this
specific microclimatic context, the sensitivity to warming
phases might be sporadically lower than for turbulent well-
mixed environments.
The empirical assessment of K �

e partly enables an
advancement over the approximations inherent to local
retroactions. This process is of major interest to cases of
large rivers, as it promotes the occurrences of very hot
spells that are not observed in streams of lower size.
Given that a shift between the theoretical and empirical

K �
e is also found to a lesser extent in cold periods (i.e. when

the evaporation is minimum), it can be hypothesized that
other factors are operating. Among them, water exchanges
between the river and the hyporheic zone and between the
river and secondary channels of groundwater that are
temporarily disconnected may explain, at least in part, the
exceptionally long ‘thermal memory’ of the river. This
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observation is consistent with the findings of Evans and
Petts (1997), Burkholder et al. (2008), and Hannah et al.
(2009) concerning the influence of the hyporheic zone not
only on the thermal regimes of rivers but also on the
longitudinal and transversal contrasts of temperature.
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Figure 7. Anomalies in simulated water temperatures between 2081–2100
and 1971–1990 for the six thermal models with a constantK�

e and for each
season: (a) the median daily water temperature (ΔT50

w ), (b) the 90th
percentile of Tw (ΔT90

w ), (c) the 99th percentile of Tw (ΔT99
w ). The last two

columns in each panel show the anomalies between T50
w , T90

w , and T99
w and

the corresponding quantities for Ta and Te
SIMULATED RESPONSES TO CLIMATE CHANGE

In this section, several model variants that were previously
calibrated are applied to assess the impact of climate change
on the temperature of the Loire River. The climate change
forcing is continuous from 1950 to 2100, and the river
temperatures were simulated for the entire time series
(1950–2100), but we focus the analysis on the period
2081–2100, which is compared with the reference period
(1971–1990). As suggested by the simulations for the
present time, the method to compute the heat exchange
coefficient does not greatly influence the models’ outputs
at the daily timescale. Hence, we only consider the model
variants with constant heat exchange coefficients.

Mean impact of climate change

The changes in water temperature between the end of
the 21st century (2081–2100) and the reference period
(1971–1990) were analysed for each selected thermal
model (Figure 7) and for the median values (T50

w ), 90th

percentile (T90
w ), and 99th percentile (T99

w ).

Intermodel variability. Overall, the 18 model variants
are mutually consistent for mean features and, especially,
for low-temperature to moderate-temperature patterns. As
the analysis focuses on extreme temperatures (e.g. T99

w
in summer), the models provide divergent outputs. Con-
sidering the median river temperature (T50

w ) in summer, it is
noticeable that REG-L1-** leads to warming patterns
distinct from the other models. This tendency is particularly
the case in summer, inwhich thewarming trend simulated by
these models reaches 0.05 �C/year, whereas it remains
inferior to 0.04 �C/year for any other model. This discrep-
ancy between the linear regression models REG-L1-** and
the other models increases for extreme temperatures. The
inclusion of a second covariate to estimate the equilibrium
temperature, leading to the models REG-L2-**, seems to
overcome this deficiency, at least for the usual thermal
Copyright © 2012 John Wiley & Sons, Ltd. Hydrol. Process. 28, 1507–1524 (2014)



1520 V. BUSTILLO ET AL.
regimes. Above the 90th percentile in summer, the degree of
difference between REG-L2-** and the more sophisticated
models (REG-S*-** and HB-**-**) cannot be denied. The
models that approximate the equilibrium temperature by
means of a logistic relationship (REG-S*-**) are in stronger
agreement with the heat balance models, more particularly
for those that use day length as a second explaining variable
(REG-S2-**). TheREG-L*model variants, based on a linear
Te/Ta relationship, fail to accurately simulate the notably hot
spells because of the ‘evaporation cooling process’ (Bogan
et al., 2004) that dissipates an increasing part of excedentary
energy via latent heat fluxes of high river temperatures. This
flaw is attenuated for REG-S*-**, which is based on a
logistic Te/Ta relationship and leads to more realistic
simulations for extreme forcing conditions. The simulations
performed with the heat balance models (HB-**) are overall
consistent with REG-S2-**, but they differ when the
seasonal structure of the warming is considered.
Seasonal structure of the warming

By keeping the dubious simulations of the REG-L1
models apart, the overall magnitude of the warming is
homogeneously distributed over the course of the year.
The simulations indicate that this magnitude should
represent up to 2 �C, regardless of the season. The models
also simulate greater warming trends for infrequent events
(at the 90th and 99th percentiles), probably because of the
concomitance in the future of more frequent and drastic
droughts (i.e. shallower water depths of �40%) with
hotter atmospheric temperatures. However, the mean
annual increase of river temperature (+2.2 to +3.5 �C) for
the 2081–2100 period remains lower than the ones of air
temperature (+3.6 �C) and of equilibrium temperature
(+3.2 �C). This difference between air and water
temperature increases for the hottest events corresponds
to the 90th and 99th percentiles (Table VII).
To separate more accurately the contributions of the air

temperature increases and the changes in the predicted
flow regime, we performed additional simulations of
water temperature over 2081–2100 using the downscaled
Arpege A2 climate scenario as climate forcing and
two distinct discharge datasets as hydrological forcing.
Table VII. The 50th, 90th, and 99th percentiles of Ta, the air tem
temperature (as computed from heat balance closure); Q, the discha
depth (m) for three time horizons (1971–1990, 2046–2065, and 208

(1971–1990: ΔTa, ΔTe

Quantile Periods Ta Te Q

50 1971–1990 11.4 13.7 368
2046–2065 13.6 15.8 235
2081–2100 15.0 16.9 166

90 1971–1990 19.6 23.0 85
2046–2065 22.1 24.6 50
2081–2100 23.8 25.4 31

99 1971–1990 24.0 27.0 43
2046–2065 26.7 28.4 24
2081–2100 29.5 30.5 16

Copyright © 2012 John Wiley & Sons, Ltd.
Both approaches are based on the discharge simulated by
the hydrological model EROS using Arpege A2 climate
forcing for 2081–2100, but this discharge time series is
unmodified in the first dataset (EROS), whereas in the
second one (QQT), it is submitted to a quantile–quantile
transformation to standardize the simulated discharge
with the observed discharge in 1971–2007. This trans-
formation withdraws the hydrological features that
result from climate change forcing, such as the drastic
decreases of the mean annual discharge (�55%) and of
low flows (�70%) and the dampening of flood peaks.
The simulated water temperatures that use these two
discharge datasets provide useful indications for the
specific contributions of flow regime changes on water
temperature increases (Table VIII). In particular, when
the EROS dataset that accounts for the full effect of the
climate change scenario on river discharge is used,
the simulated water temperatures tend to be warmer than
if the climate change effect on river discharge is
dampened (QQT).
The differences induced by the two discharge datasets

tend to increase above the 90th percentile of water
temperature, regardless of the season. However, the
contribution of flow regime changes to increases in water
temperature remains low. It never exceeds 15% (+0.6 over
+4.0 �C in spring for the 99th percentile). On average, the
difference between the water temperatures that are
simulated with the two discharge datasets is 0.2 �C, which
is less than 6% of the water temperature increase (+3.5 �C)
simulated between 1971–2007 and 2081–2100. This
finding suggests a weak sensitivity of water temperature
warming to changes in flow regime, at least in the Middle
Loire River.
Frequency distributions

Comparing the statistical distributions of water
temperature between the historical and projected future
periods enables a better understanding of potential
changes in thermal variability, including the frequency
of extreme values. The information obtained by means of
the HB-ea-K1 model is synthesized in Figure 8, from
which two points must be emphasized:
perature (from the Arpege v4 SRES A2); Te, the equilibrium
rge (m3/s; from the hydrological model EROS); and D, the river
1–2100) and their variations compared with the reference period
, ΔQ/Q, and ΔD/D)

D ΔTa ΔTe ΔQ/Q (%) ΔD/D (%)

1.92 — — — —
1.53 2.3 2.1 �36 �20
1.29 3.6 3.2 �55 �33
0.92 — — — —
0.70 2.5 1.6 �42 �24
0.55 4.2 2.4 �64 �40
0.66 — — — —
0.49 2.7 1.4 �44 �25
0.40 5.5 3.5 �63 �39
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Table VIII. Water temperature simulated by the 18 thermal models for the period 2081–2100 for each season: (1) the median daily
water temperature (T50

w ), (2) the 90th percentile of Tw (T90
w ), (3) the 99th percentile of Tw (T99

w )

EROS QQT Anomaly

Winter Spring Summer Fall Winter Summer Spring Fall Winter Summer Spring Fall

T50
w 9.2 19.0 25.4 14.0 9.1 18.7 25.4 14.2 0.1 0.3 0.0 �0.2

T90
w 13.4 23.8 28.2 20.6 12.8 23.4 27.9 20.7 0.6 0.4 0.3 �0.1

T99
w 16.6 26.7 30.1 23.2 16.1 26.2 29.6 22.9 0.5 0.6 0.5 0.3

ΔT50
w 3.0 3.5 3.8 3.5 2.9 3.4 3.8 3.6 0.1 0.2 0.0 �0.1

ΔT90
w 3.5 3.3 4.1 4.5 3.2 3.0 3.9 4.5 0.3 0.3 0.2 0.0

ΔT99
w 4.9 4.0 4.0 4.0 4.6 3.8 3.6 3.8 0.3 0.3 0.4 0.2

The thermal models are forced by two distinct discharge datasets that are based on the simulation by the hydrological model EROS over the 2081–2100
period, which is either unchanged (EROS) or smoothed by a quantile–quantile transformation (QQT). The water temperature changes between 2081–2100
and 1971–1990 are presented in the last three rows:ΔT50

w ,ΔT90
w , andΔT99

w and their anomalies (EROS–QQT), depending on the discharge data that are used
as hydrological forcing, are presented in the last four columns.
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1. In the historical period, the simulated water tempera-
tures, whether forced by the SAFRAN database or by
the downscaled climate scenario Arpege A2 for the
period 1977–2007, show a bimodal distribution, such
as with the observed water temperatures. However, the
simulation forced by Arpege A2 exhibits substantial
differences, especially for warmer temperatures, which
are overrepresented between 22 and 25 �C and under-
represented above 25 �C.

2. When the distributions of water temperature simulated
under the Arpege-A2 forcing between three successive
periods (historical, middle of the 21st century, and end
of the 21st century) are compared, a continuous drift
towards warmer water temperatures with time is shown,
but the change is not a mere translation. In the projected
future, intermediate water temperatures (10–18 �C) are
gradually less frequent, as are cold temperatures (the peak
of occurrence centred at 6–9 �C decreases in magnitude),
whereas the frequency of hot temperatures is enhanced.
This shift results in a displacement of themainmode from
9 to 12 �C for the historical period towards 24 to 26 �C for
the 2081–2100 period.
Copyright © 2012 John Wiley & Sons, Ltd.
Taken together, these two points suggest that the thermal
simulations that are performed under the climate change
scenario Arpege A2 might underestimate water tempera-
tures during the notably hot spells that may arise in
upcoming decades. Note that this conclusion is model
dependent and needs to be checked by alternative climate
change scenarios that are based on different GCMs and/or
downscaling methods.
CONCLUSION

In this study, the similarities and differences in modelled
water temperatures were investigated for the following
reasons: (1) to assess the robustness of simulated
temperature trends, (2) to define their validity range, and
(3) to define their transferability to future forcing conditions.
Overall, the models based on the equilibrium temperature
concept seem adequate for predicting the impact of
anthropogenic climate changes, particularly for two reasons.
First, their outputs, Te and Ke, are climate derived and may
be employed without reference to a historical time series of
discharge, thus allowing the deconvolution of the impacts
relative to the flow regime and to the meteorological
changes of the river water temperature. Second, these
models restrict the required input data for the calculation of
Te and Ke to those most reliably assessed by GCMs.
The regression-based models REG-L*-** and REG-

S*-** are particularly interesting because of their
parsimony in terms of the number of calibrated parameters
and of the number of incoming forcing variables. These
calculations might serve as decent models for cases when
the air temperature and river discharge are the only available
variables. These calculations are also suitable for assessing
the impact of anthropogenic climate change because air
temperature is the meteorological variable that is the most
reliably predicted by GCMs (IPCC, 2007). These two
models have many additional advantages, including their
simplicity of use, lack of an annual bias, and moderate
dispersion of errors. However, a penalizing flaw is identified
for REG-L1-**, which is based on linear approximations of
Te by Ta and tends to overestimate highly during hot spells.
Hydrol. Process. 28, 1507–1524 (2014)
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The transposition of REG-L1-** to projections of future
periods for which hot thermal events are expected to be
more frequent is thus not recommended. In comparison,
regression-based models that rely on a logistic function
between Te and Ta (REG-S*-**) satisfactorily describe
the hot spells, and their employment to simulate hot
thermal sequences of the future reasonably can be
recommended. This last method seems to offer the best
compromise between performance and parsimony. It
should be reminded that the equilibrium temperature is
much better described when two covariates are used,
namely, day length and air temperature, instead of the
inclusion of only air temperature. The two covariates
considerably limit seasonally structured errors that are
observed when only Ta is employed as a covariate.
Overall, the studied heat balance models HB-**-** with

five heat terms performed slightly better than the regression-
based approaches. The main flaw of the five-term HB
models studied was that they do not take into account the
influence of secondary heat inputs, such as groundwater
or anthropogenic heat inputs (whether implicitly, as for
REG-L*-** and REG-S*-**, or explicitly, as for more
elaborated models). This omission led to seasonally
structured errors with an overestimated river temperature in
spring and an underestimated river temperature in fall. This
imperfection would probably be reduced by the inclusion
of additional heat terms, such as streambed heat fluxes,
which are potentially influenced by groundwater seepage.
It should also be reminded that the method for

computing the heat exchange coefficient influences the
magnitude of the heat peaks and the diurnal variability of
water temperatures. Empirical formulas (K1 and K2) led
to a considerable decrease of Ke, which enabled the
simulation of highly realistic thermal responses in
contrast to those obtained through a physically based
formula. The empirical formulas avoid the overestimation
of river temperatures during notably hot spells and
considerably limit the seasonally structured errors, both
of which are appealing for climate change studies.
In future periods, the river temperatures simulated by

HB and REG-S2-** models exhibited similar variations
and occurrences of hot spells over the 21st century at both
the annual and seasonal scales. Despite variations in
absolute terms, such as the differences between simulated
river temperatures, these models provide convergent
values in relative terms, including regarding the features
and magnitudes of the variations of river temperature
between time horizons (Figure 7). This result is important
and indicates that simple approaches, such as regression-
based models, might lead to the same results as more
sophisticated models.
Finally, the most uncertain feature of the studied HB

models regards their robustness under climate change
scenarios, particularly because the models are forced with
four meteorological variables (shortwave solar radiation,
wind speed, relative humidity of air, and air temperature),
which are subjected to a significant uncertainty in
GCMs, even though the air temperature is predicted with
a higher level of confidence than with other meteoro-
Copyright © 2012 John Wiley & Sons, Ltd.
logical variables (Räisänen, 2007). Therefore, we warmly
recommend assessing the impacts of climate change on
river temperatures by means of regression-based methods
that rely on logistic approximations of equilibrium
temperatures Te. This approach, which might perhaps be
seen as crude, is actually at least as robust as the most
refined classical heat balance models.
However, the question remains regarding to what extent

the preceding analysis, focused on a rather large river reach,
is transposable to the smaller headwater streams in which
riparian shading, groundwater inputs, snowmelt, and
sediment–water heat exchanges may be contributing
significantly to stream heat budgets. Amodified equilibrium
temperature model that was based on HB and accounted for
these additional heat terms was successfully implemented
by Herb and Stefan (2011) to better estimate the thermal
regime of cold-water streams. A generalization of our study
to smaller streams could compare this type ofmodelwith the
simplified regression-based models, which might be
adapted by calibrating the empirical coefficients relating
Te = f(Ta, Julian day, shading factor) and Ke = f(U) for rivers
of variable size. This approach might offer an efficient way
to regionalize river temperature models and/or to assess the
magnitude of groundwater inputs for rivers.
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