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a b s t r a c t 

The long wave-length dynamics and stability of a bed of sand occupying the lower segment of a circular 

pipe are studied analytically up to first-order in the small parameter characterizing the slope of the bed. 

The bed is assumed to be at rest, with at most a thin sand layer (the bedload) moving at the sheared 

interface. When the sand bed is plane, with depth independent of position z along the axis of the pipe, 

the velocity of the liquid is known from previous studies of stratified laminar flow of two Newtonian 

liquids (the lower one with infinite viscosity representing the sand bed). When the depth of the sand 

bed varies with z , secondary flows develop in the cross-sectional ( x , y ) plane, and these are computed 

numerically, assuming that the sand bed remains a straight horizontal line in the cross-sectional plane. 

The mean shear stress acting on the perturbed sand bed is then determined both from the computed sec- 

ondary flows and by means of the averaged equations of Luchini and Charru. The latter approach requires 

knowledge only of the flow over the unperturbed, flat sand bed, combined with an accurate approxima- 

tion of the distribution of the perturbed stresses between the pipe wall and the sand bed. The perturbed 

stresses determined by the two methods agree well with each other. Using these stresses, it is then pos- 

sible to apply standard theories of bed stability to determine the balance between the destabilizing effect 

of inertial (out-of-phase) stresses and the stabilizing effects of gravity and relaxation of the particle flux, 

and various examples are considered. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The transport of sand/water slurries along a horizontal pipeline

s of commercial importance, and has therefore been the sub-

ect of many studies, reviewed by e.g., Peker and Helvacı (2008) ;

oharzadeh et al. (2013) ; and Soepyan et al. (2014) . The predic-

ion and control of transport (or settling) of entrained sand in

etroleum pipelines is similarly important ( Salama, 20 0 0 ). 

At high fluid velocities the particles are suspended and flow

ith the fluid. However, at low velocities the particles (if denser

han the fluid) sediment under gravity, and a stationary bed of par-

icles forms on the lower side of the pipe ( Turian et al., 1987 ). Our

nterest here lies in the regime of moderate fluid shear stress on

he bed, when particles at the bed surface are slowly entrained

nto a thin moving layer (e.g., Oroskar and Turian, 1980; Takahashi

nd Masuyama, 1991; Doron and Barnea, 1995, 1996; Turian et al.,

987; Peysson et al., 2009 ). This moving layer (the bedload layer)

as a thickness of just a few particle diameters. 
∗ Corresponding author. Tel.: +44 1223760436. 
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Many studies have concentrated on the flow rates of the sand

nd water as functions of the applied pressure gradient (e.g., Doron

t al., 1987; Kuru et al., 1995; Ouriemi et al., 2009a ). However,

 crucial issue for bedload transport is the shear stress exerted

y the fluid flow over the bed: this stress determines the parti-

le flow rate. The upper surface of the bed is usually wavy (rather

han plane), so that the shear stress and particle flow rate are

on-uniform in the streamwise direction, leading to the propaga-

ion of a complex pattern of sand waves, see e.g., the review by

harru et al. (2013) . These waves are of both scientific and engi-

eering interest: ripples and dunes are known to have strong con-

equences on flow rates and pressure gradients ( Takahashi et al.,

989; Takahashi and Masuyama, 1991; Ouriemi et al., 2009b; Al-

ababidi et al., 2012 ). 

The aim of this paper is to provide a set of area-averaged equa-

ions governing slow variations of the fluid flow and sand bed,

onsistent up to first-order in the small-slope parameter. We then

se these equations to analyze the linear stability of the bed. The

nalysis is restricted to laminar flow, with the usual quasistatic as-

umption that the time scale for bed height variations is long com-

ared to the hydrodynamic time scale, so that the flow may be

alculated as if the bed profile were fixed. 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmultiphaseflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2016.02.007&domain=pdf
mailto:jds60@cam.ac.uk
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.02.007
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Fig. 1. Cross-section of the pipe, with sand at the bottom, and liquid above. The 

pipe has radius R and the maximum sand bed depth, EB, is h (3) . The sand bed 

width AEC has length C b , and the length of the wetted wall ADC is C w (2) . 
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We first ( Section 2 ) discuss the velocity profile and shear

stresses in fluid flowing through a pipe in which the sand bed

is uniform along the length of the pipe. When the height of the

sand bed varies slowly in the axial direction, not only is there a

slow variation in the axial velocity of fluid along the pipe, but sec-

ondary flows are set up in the cross-section. Such flows are dis-

cussed in Section 3 . In Section 4 we review a standard theory for

the movement of sand grains at the bed surface due to the hydro-

dynamic bed stress. In Section 5 we derive the set of area-averaged

equations for the fluid flow rate, particle flow rate and bed height,

assuming that the sand flux is a function of the mean stress av-

eraged over the width of the bed (the detailed stress distribution

is ignored). The equations are based on the analysis of Luchini

and Charru (2010a ) of slowly-varying laminar flows which appeals

to the stationarity of the viscous dissipation term in the energy

equation, combined with the approximation that the ratio of the

shear force acting on the bed to the shear force acting on the wet-

ted wall of the pipe is the same at first-order as at zeroth-order.

These equations, although consistent up to the first-order in the

small-slope parameter, require only the parallel-flow analytical re-

sults ( i.e., they do not require the calculation of the first-order flow

disturbance over the slowly-varying sand bed). The validity of this

analysis is confirmed by comparison with the full first-order nu-

merical results presented in Section 3 . As an illustration of the use

of the area-integrated equations, a stability analysis of the plane

bed is performed in Section 6 . 

The analysis is restricted to Newtonian fluids, and therefore is

inappropriate for either concentrated slurries of particles or for

non-Newtonian crude petroleum: however, it is a useful starting

point even for such for fluids. The Reynolds number will be re-

quired to be sufficiently low for the basic flow within the pipe

to be laminar, but, as is standard in long wavelength analysis of

nearly parallel flow, the Reynolds number need not be small com-

pared to unity (as will be discussed in Section 3 ). The regime that

we shall investigate is that in which particles at the surface of the

sand bed are just starting to move due to the stress imposed on

them by the fluid flowing above them in the pipe. Thus the analy-

sis applies to a restricted range of flow rates which is, nevertheless,

an important one, since it separates the regime in which the bed

is at rest (growing slowly if further particles are deposited) from

that in which the particle bed starts to be eroded (as would be

required for cleaning out the pipe). We shall re-visit these restric-

tions in Section 7 , where they can be made explicit in terms of the

analysis of Sections 2 –6 . 

2. Liquid flow through a pipe with a uniform sand bed 

The geometry that we consider is shown in Fig. 1 . The pipe has

radius R . A bed of sand at the base of the pipe subtends an angle

2 δb at the center of the pipe, and has a plane, horizontal upper

surface AEC. The upper part of the pipe is occupied by liquid, and

the portion of the circular pipe wall that is wetted by liquid sub-

tends an angle 2 δw 

= 2(π − δb ) at the center of the pipe. 

We set up Cartesian coordinates, with z axis parallel to the axis

of the pipe and with ( x , y ) in the cross-sectional plane of the pipe.

The y axis is vertical, along the symmetry axis, and the x axis is

horizontal, joining the two triple points A and C where liquid, the

pipe wall and the sand bed meet ( Fig. 1 ). We assume that the in-

terface between the sand bed and the liquid is plane, and that it

coincides with the x axis y = 0 . We shall occasionally use cylin-

drical polar coordinates ( r , ψ , z ), with ψ = 0 directed along the y

axis. 

The cross-sectional area A of the portion of pipe occupied by

liquid can be found by elementary methods, and is 

A = R 

2 
(
δw 

− 1 
2 

sin 2 δw 

)
. (1)
n the cross-section, the length C b of the sand bed, and the length

 w 

of the portion of the cylindrical wall wetted by liquid, are 

 b = 2 R sin δb , C w 

= 2 Rδw 

. (2)

he maximum height of the sand bed, at x = 0 , is 

 = R (1 − cos δb ) = R (1 + cos δw 

) , (3)

nd we note for future use that 

∂A 

∂h 

= −C b , 
∂C b 
∂h 

= −2 cot δw 

. (4)

Particle velocities in the bedload layer are much smaller than

he bulk fluid velocity, typically a fraction of the fluid velocity at a

istance of one particle diameter above the bed at rest. Hence it is

sual to calculate the fluid flow as if the wavy bottom were fixed

 Charru et al., 2013 ), and the errors introduced by this approxi-

ation are small. The liquid therefore satisfies a no-slip boundary

ondition both at the bed/liquid interface and on the circular wall

f the pipe. 

Flow of two fluids in such a geometry has been well studied

 Bentwich, 1964; Ranger and Davis, 1979; Brauner et al., 1996;

iberg and Halvorsen, 20 0 0 ), because of its importance when

umping two fluids that have separated due to their density dif-

erence. If the viscosity of the lower fluid is taken to be infinite,

his lower fluid becomes stationary, and the flow of the upper fluid

orresponds to fluid flowing above a sand bed. We present a short

ummary of the analysis and analytic predictions for this case of a

niform flat bed in Appendix A . However, we shall eventually need

o use numerical methods, and it is convenient to do so even for

he simplest case of a uniform sand bed. The analytic results then

rovide a useful check on the accuracy of the numerical scheme. 

The liquid is assumed to be Newtonian and incompressible,

ith density ρ and viscosity η. If the bed of sand is uniform, the

iquid velocity w in the z direction satisfies 

∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 

)
w = −G/η, (5)

here −G < 0 is the axial pressure gradient. We solved the Poisson

q. (5) , subject to a no slip condition at the boundaries, by means

f the finite element package FreeFem ++ ( Hecht, 2012 ). By way of

xample, Fig. 2 shows isolines of the velocity w (x, y ) , normalized

y Q / R 2 where Q is the volumetric flow rate, for the case h/R = 0 . 5 .

ote that the maximum velocity is greater than the value 2/ π for

/R = 0 , as expected. 
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Fig. 2. Velocity field w (x, y ) normalized by Q / R 2 where Q is the flow rate, for h/R = 

0 . 5 . The FreeFem ++ calculations used 24290 triangular elements. 
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Fig. 3. Variation with h / R of the dimensionless flow rate ˆ Q = Q/ (GR 4 /η) . ( ◦), nu- 

merical solution; (—), analytical solution (7) ; (– –), asymptotic solution (115) . 
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The computed dimensionless flow rate 

ˆ 
 = 

Q 

GR 

4 /η
, Q = 

∫ 
A 

w d S, (6)

s shown in Fig. 3 as a function of h / R . This can be compared

gainst the analytic result obtained by Ranger and Davis (1979) ,

hich takes the form 

ˆ 
 (δw 

) = 

δw 

8 

− sin 2 δw 

24 

− sin 4 δw 

96 

− sin 

4 δw 

I (7) 
a

Fig. 4. Distribution of the shear stresses along the boundaries: (a), τ b on the b
here 

 = 

∫ ∞ 

0 

πω 

3 cosh ωδw 

d ω 

sinh ω δw 

sinh 

2 ω π
. (8) 

etails are given in Appendix A.2 , and the finite element computa-

ions are accurate to within 0.02%. In the Appendix it is also shown

hat the integral I (8) is closely approximated by 

 ≈ I small = 

1 

6 δw 

+ 

δw 

90 

− δ3 
w 

1890 

+ 

δ5 
w 

14175 

+ · · · , δw 

� π. (9)

hen this approximation is inserted into the expression (7) for Q ,

he errors are less than 0.34% for all δw 

. The height h of the sand

ed is related to the angle δw 

by the relation (3) , and from now on

e shall consider ˆ Q to be a function of h , rather than of δw 

. It is

hown in Eq. (115) of A.2 , that ˆ Q ∼ (2 − h/R ) 7 / 2 as h → 2 R , as can

e seen in Fig. 3 . 

The shear stress τb = τyz over the sand bed C b , and the shear

tress τw 

= τrz over the wetted wall C w 

of the cylinder, are non-

niform. Computational results for these shear stresses, normal-

zed by GR , are shown in Fig. 4 . For h/R = 0 . 25 (small sand con-

ent), the bed shear stress τ b varies strongly, with maximum value

arger than 

1 
2 GR ; τw 

is nearly uniform and close to the value 1 
2 GR

the classical value for Poiseuille flow), and decreases sharply as

he sand bed is approached ( | ψ | � δw 

). For higher sand content

 h/R = 1 and h/R = 1 . 75 ), both stresses are smaller than at low

and content, as expected (increasing bed height at constant pres-

ure gradient corresponds to decreasing flow rate). 

We shall later need the average shear stresses over the sand

ed and wetted wall: 

b = 

1 

C b 

∫ 
C b 

τb d x, τ w 

= 

R 

C w 

∫ 
C w 

τw 

d ψ. (10) 

hese mean shear stresses are discussed by Biberg and Halvorsen

20 0 0) and details are given in Appendix A.3 . In particular, on the

and bed, 

b = 

GR 

2 

C b 

(
sin 

2 δw 

δw 

− sin 2 δw 

2 

)
(11) 

nd on the wetted wall 

w 

= 

GR 

2 

C w 

(
δw 

− sin 

2 δw 

δw 

)
. (12) 

ariations with h / R of τ b and τw 

are shown in Fig. 5 . For h/R = 0 ,

he classical value 1 
2 GR is recovered. As the bed thickness in-

reases, the stresses decrease (as does the flow rate), except for

mall h / R where τ b first slightly increases. 

The mean liquid velocity w in the pipe is 

 = 

Q 

A 

= 

1 

A 

∫ 
w d S. (13) 
A 

b

ed; (b), τw on the pipe wall. ( ◦), h/R = 0 . 25 ; ( 	 ), h/R = 1 ; ( ∗), h/R = 1 . 75 . 
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Fig. 5. Variation with h / R of the mean shear stresses (10) τ b ( ◦) and τ w ( 	 ), nor- 

malised by GR . Symbols, numerical solution; (—), analytical solutions (11) and (12) . 
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Fig. 6. Variations with h / R of the shape factors α ( ◦) (14) and β ( 	 ) (16) of the 

velocity profile w (x, y ) , normalized by αns = 4 / 3 and βns = 2 , their values for h/R = 

0 . Symbols, numerical solution; (—), fits (15) and (17) . 
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a  
The stability analysis of Section 6 requires the shape factor α of

the profile of w 

2 over the cross section, i.e., 

α = 

1 

A w 

2 

∫ 
A 

w 

2 d S. (14)

Results for α, scaled by the value αns = 4 / 3 for a pipe with no

sand, are shown in Fig. 6 as a function of h / R . They vary little over

the entire range of h , and may be approximated by 

α

αns 
= 1 + 0 . 01 

(
h 

R 

)
+ 0 . 01 

(
h 

R 

)2 

. (15)

The end point α(h = 2 R ) = 35 / 33 can be found analytically (Ap-

pendix A.5 ). Similarly, we shall require the shape factor β of the

profile of w 

3 : 

β = 

1 

A w 

3 

∫ 
A 

w 

3 d S. (16)

Results for β , scaled by the value βns = 2 for a pipe with no sand,

are shown in Fig. 6 and (like those for α) vary little over the entire

range of h . They are approximated by 

β

βns 
= 1 + 0 . 021 

(
h 

R 

)
+ 0 . 026 

(
h 

R 

)2 

. (17)

The end point β(h = 2 R ) = 490 / 429 can again be found analyti-

cally ( Appendix A.5 ). 

3. A slowly varying sand bed 

We now consider a sand bed with a height h ( z ) that varies

slowly as a function of the axial position z . A first approximation

to the fluid velocity is given by the velocity w found in Section 2 at

the appropriate local value of the height h of the sand bed. How-

ever, secondary flows must be established in order to allow the
uid velocity to evolve as it moves along the pipe. In particular,

he streamlines will no longer be parallel to the pipe axis, and in-

rtial effects are introduced: a standard example is Dean flow in a

elical pipe ( Berger et al., 1983 ). 

We follow the exposition of Manton (1971) who considers flow

hrough a circular pipe with diameter that varies slowly with po-

ition z along the pipe. The cross-sectional area of such a pipe

hanges, but not the shape. A related problem of flow through a

ipe with an elliptical cross-section is studied by Todd (1977) . The

spect ratio of the ellipse remains constant, but the ellipse axes

otate with position along the pipe. Thus the cross-sectional area

f pipe remains constant, but the shape changes. In the partially

and-filled pipe considered here, both the shape and area of the

ross-section change with position along the pipe. 

In this Section, we choose the pipe radius R , the velocity W =
/R 2 and the stress ηW / R as the length, velocity and pressure

cales, respectively. Since the flow rate is constant along the pipe

ue to incompressibility, these scales are constant too, unlike the

ressure gradient which varies slowly. The steady non-dimensional

avier–Stokes equations are 

e ( u . ∇ ) u = −∇ p + ∇ 

2 u , (18)

here 

e = 

ρRW 

η
= 

ρQ 

Rη
(19)

s the Reynolds number. 

We now assume that changes in the z direction (along the pipe

xis) occur slowly over a lengthscale O ( R / ε), where ε � 1 is a typ-

cal bed slope. Since W = Q/R 2 is a typical fluid velocity in the

xial ( z ) direction, velocities in the ( x , y ) directions are O ( εW ) by

ontinuity, and inertial corrections to the axial velocity field are

 ( W εRe). Thus, we follow ( Manton, 1971 ) and seek an expansion

f the (dimensionless) fluid velocity and pressure in the form 

 = u 

(0) + h 

′ u 

(1 s ) + h 

′ Re u 

(1 i ) + · · · , (20a)

p = p (0) + h 

′ p (1 s ) + h 

′ Re p (1 i ) + · · · , (20b)

here h ′ = d h/ d z is the local bed slope, u 

(0) is the velocity in a

niform pipe, h ′ u 

(1s) ∼ O ( ε) is a Stokes flow correction due to in-

ompressibility, and h ′ Re u 

(1i) ∼ O ( εRe) is the first inertial correc-

ion. Thus, as is usual in problems of nearly unidirectional flow,

e require only that εRe � 1 (subject, of course, to the Reynolds

umber being sufficiently small to avoid transition to turbulence). 

The leading order solution consists of an axial flow u 

(0) =
(0 , 0 , w 

(0) ) , where w 0 satisfies the equation 

 

2 
H w 

(0) = 

∂ p (0) 

∂z 
, (21)

here ∇ 

2 
H is the (dimensionless) two-dimensional Laplace operator

 

2 
H = 

∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 
. (22)

We recover here the uniform flow problem discussed in

ection 2 , Eq. (5) , whose dimensional solution is given in Appendix

1, Eq. (104) , with pressure gradient G ( Q ) given by (112) , or, in di-

ensionless form: 

∂ p (0) 

∂z 
= −1 / ̂  Q . (23)

n the present case of non-uniform flow, slow variations of the bed

eight along the pipe imply slow variations of ˆ Q (h/R ) according to

7) , and therefore slow variations of the pressure gradient (23) . 

To find the Stokes flow correction u 

(1 s ) = (u (1 s ) , v (1 s ) , 0) associ-

ted with the slow changes in the z -direction of the velocity field
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Fig. 7. Isolines of the velocity gradient (h ′ ) −1 ∂ w 

(0) /∂ z, normalized by Q / R 3 , for 

h/R = 0 . 5 . 
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(0) , we shall require the derivative ∂ w 

(0) /∂ z. One method to de-

ermine ∂ w 

(0) /∂ z would be to differentiate the analytic expression

104) , holding ( x , y ) constant. However, the results are unwieldy,

nd we again turn to numerical computation. Differentiating (21)

ith respect to z and using (23) , we find 

 

2 
H 

∂w 

(0) 

∂z 
= 

∂ 2 p (0) 

∂z 2 
= 

h 

′ 
ˆ Q 

2 

d ̂

 Q 

d h 

, (24) 

here d ̂

 Q / d h is obtained in terms of d I/ d δw 

by differentiating (7) .

he derivative d I/ d δw 

can be obtained from the exact integral form

8) for I . However, for computational purposes it is easier to differ-

ntiate the approximate expression (9) for I . The resulting approxi-

ation for d ̂

 Q / d h has relative errors of at most 1.3%. The boundary

onditions for (24) are 

1 

h 

′ 
∂w 

(0) 

∂z 
= 0 on C w 

, (25a) 

= −∂w 

(0) 

∂y 
on C b . (25b) 

Thus ∂ w 

(0) /∂ z satisfies a Poisson equation (24) , and could be

ound by methods similar to those used in Appendix A to ob-

ain w . However, we again choose to solve (24) by means of the

nite element package FreeFem ++ . Fig. 7 shows 
(
h ′ 

)−1 
∂ w 

(0) /∂ z.

or positive bed slope, the flow is accelerated, except close to the

ed where it slows down due to the approach of the no-slip bed

oundary at which the fluid velocity is zero. 

At O ( ε), the Navier–Stokes equations become 

 

2 
H u 

(1 s ) = 

∂ p (1 s ) 

∂x 
, ∇ 

2 
H v 

(1 s ) = 

∂ p (1 s ) 

∂y 
, (26)

ith incompressibility in the ( x , y ) plane replaced by the forced

quation 

∂u 

(1 s ) 

∂x 
+ 

∂v (1 s ) 

∂y 
= − 1 

h 

′ 
∂w 

(0) 

∂z 
. (27) 

e require u (1 s ) = v (1 s ) = 0 on the boundary, which is consistent

ith (27) since incompressibility imposes that the integral 

 

A 

∂w 

(0) 

∂z 
d S (28) 

ver the cross-sectional area A of the liquid is zero. The above

quations for the Stokes corrections u 

(1s) and p (1s) were solved nu-

erically by means of FreeFem ++ , and typical results for the ve-

ocities u (1s) and v (1 s ) are shown in Fig. 8 . The vertical component

 

(1 s ) is positive and much larger than u (1s) , so that, for h ′ > 0, the

ow is predominantly upwards (no eddies). Close to the bed, the

irection of the horizontal Stokes correction (and shear stress) de-

ends on the bed height: for h / R < 1, the fluid pushed upwards
y the rising bed ( h ′ > 0) flows into the corners, so as to move

and grains from the center of the bed towards the walls ( Fig. 8 a),

hereas for h / R > 1, the directions are reversed ( Fig. 8 c), with the

ransition between the two behaviors at h/R = 1 . 

Pressure gradients in the ( x , y ) plane are O ( εG ). The non-

niform pressure p (1s) over the ( x , y ) plane varies slowly in the z

irection, leading to axial pressure gradients that are non-uniform

ver the ( x , y ) plane only at O ( ε2 G ). They can therefore be ne-

lected at the order to which we are working. 

We now consider inertial effects. In particular, we shall require

he inertial correction w 

(1 i ) to the axial velocity, which satisfies 

 

2 
H w 

(1 i ) − ∂ p (1 i ) 

∂z 
= u 

(1 s ) ∂w 

(0) 

∂x 
+ v (1 s ) ∂w 

(0) 

∂y 
+ 

w 

(0) 

h 

′ 
∂w 

(0) 

∂z 
(29)

ith boundary condition w 

(1 i ) = 0 on both the pipe wall and the

urface of the sand bed. Once again, incompressibility implies that

he volumetric flow rate Q is fixed, and so the pressure gradient

 p (1i) / ∂ z in (29) must be chosen in such a way that the integral 
 

A 

w 

(1 i ) d S (30) 

s zero. An easy way to achieve this is first to solve (29) for w 

(1 i ) 
0 

ith ∂ p (1 i ) /∂ z = 0 , and then to correct the volumetric flow rate by

icking the pressure gradient to be 

∂ p (1 i ) 

∂z 
= 

G 

Q 

R 

4 

η

∫ 
A 

w 

(1 i ) 
0 

d S = 

1 

ˆ Q 

∫ 
A 

w 

(1 i ) 
0 

d S. (31)

As discussed above, the axial pressure gradient related to the

tokes secondary flow, ∂ p (1 s ) / ∂ z , is of higher order.) The corre-

ponding axial velocity is 

 

(1 i ) = w 

(1 i ) 
0 

− w 

(0) 

∫ 
A 

w 

(1 i ) 
0 

d S. (32)

ig. 9 shows a typical velocity field for w 

(1 i ) . The correction is neg-

tive in the core of the pipe, corresponding to the retarding effect

f inertia in an accelerating flow, and positive near the boundaries

n order to satisfy the zero net flux condition. 

The dimensional shear stress on the sand bed and on the pipe

all can be written as 

ηW 

R 

(
τ (0) + h 

′ Re τ (1 i ) 
)

= GR ̂

 Q 

(
τ (0) + h 

′ Re τ (1 i ) 
)

(33) 

here τ (0) and τ (1i) are non-dimensional stresses corresponding

o the non-dimensional velocities w 

(0) and w 

(1 i ) . However, stresses

caled by ηW/R = GR ̂  Q become infinite as the bed fills with sand

i.e., as h → 2 R ), in the same way as the non-dimensional unper-

urbed pressure gradient 1 / ̂  Q becomes infinite when h → 2 R with

he flow rate Q held constant. It is therefore more convenient to

iscuss the inertial stresses scaled by GR , rather than by GR ̂  Q . This

caling, used previously in Figs. 4 and 5 , allows us to directly com-

are the O (Re) stress perturbations with the stresses in the unper-

urbed flow. 

The bed shear stress τ (1 i ) 
b 

varies with position x across the bed,

s does the wall shear stress τ (1 i ) 
w 

on the pipe wall. These varia-

ions are shown in Fig. 10 for various values of h / R , and are clearly

elated to the variations in axial velocity shown in Fig. 9 . 

The mean, scaled stress perturbation, averaged over the surface

f the sand bed, is 

(1) 
b 

= 

1 

C b 

∫ 
C b 

τ (1 i ) 
b 

d x (34) 

nd the mean, scaled stress over the wetted surface of the pipe is

(1) 
w 

= 

R 

C w 

∫ 
C w 

τ (1 i ) 
w 

d ψ. (35) 
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These mean stresses, together with the pressure gradient ∂ p (1i) / ∂ z ,
are shown in Fig. 11 . When the bed thickness h is small, the area of

the bed increases as h 3/2 : the mean inertial bed and wall stresses,

and the inertial pressure gradient, are all small. When h → 2 R

and the bed is nearly full of sand, it is shown in Eq. (148) of

Appendix A.5 that the stresses τ (1) 
b 

and τ (1) 
w 

are equal and de-

crease as (2 − h/R ) 1 / 2 , whereas the perturbation pressure gradient

∂ p (1i) / ∂ z diverges as (2 − h/R ) −1 / 2 , as shown in Eq. (146) . We see

from Fig. 11 that there is good agreement between the FreeFem ++
numerical computations of the perturbed stresses and the asymp-

totic expressions when 2 − h/R � 1 . When FreeFem ++ was used in

Section 2 to determine the fluid velocity w 

(0) above a uniform
and bed, we could assess the accuracy of the results by com-

aring them against the analysis of Appendices A .1 –A .3 . In gen-

ral we have no analytic results by which we might assess the

ccuracy of the computed inertial corrections (other than in the

imit 2 − h/R � 1 ). However, taking h/R = 0 . 5 as an example, we

ote that a reduction of the number of triangular elements used

y FreeFem ++ from 24290 to 6182 changed the computed iner-

ial pressure gradient and mean wall and bed stresses by less than

.06%. 

Finally, we consider the ratio of the inertial force on the sand

ed to the total inertial force on the bed and wetted cylinder

all, 
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Fig. 9. Isolines of the inertial correction w 

(1 i ) : (a), h/R = 0 . 5 ; (b), h/R = 1 . 5 . 

a b

Fig. 10. Variation in the cross-section of the pipe of the inertial shear stresses, scaled by h ′ Re GR . (a), across the bed; (b), on the pipe wall. ( ◦), h/R = 0 . 25 ; ( 	 ), h/R = 1 ; ( ∗), 

h/R = 1 . 75 . 

a b

Fig. 11. Variations with h / R of the inertial corrections. (a) Mean shear stresses scaled by h ′ Re GR : 	 , computed bed stress τ (1) 
b 

(34) ; ◦, computed wall stress τ (1) 
w (35) ; ( −−), 

asymptotic prediction (148) for δw � 1 . (b) Pressure gradient ∂ p (1) / ∂ z scaled by h ′ Re G : ( −), computed (31) ; ( −−), asymptotic prediction (146) for δw � 1 . 
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(

F  

o  

t  

a  

t  

2  

a  

f  

t  
C b τ
(1) 
b 

C b τ
(1) 
b 

+ C w 

τ (1) 
w 

, (36) 

nd compare this to the ratio of the Stokes forces, i.e., by (11) and

12) , 

C b τ
(0) 
b 

C b τ
(0) 
b 

+ C w 

τ (0) 
w 

= 

2 sin 

2 δw 

− δw 

sin 2 δw 

2 δ2 
w 

− δw 

sin 2 δw 

. (37) 
ig. 12 (a) shows that the ratios (36) and (37) remain close indeed,

ver the whole range of h / R . It can be seen that as h / R tends

o 2, both force ratios tend to 0.5: in this limit the geometry is

pproaching that of a long narrow slot, for which we know that

he stresses on the top and bottom are equal ( Luchini and Charru,

010a ), hence the ratio 0.5. This result is also consistent with the

nalytic results (130) for the unperturbed flow (A.3) , and (148)

or the inertial perturbation (A.5) . A more quantitative demonstra-

ion of the closeness of the force ratios is obtained from Fig. 12 (b)
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a b

Fig. 12. (a) Variation with h / R of the inertial perturbed force ratio (36) ( −−), and unperturbed force ratio (37) ( −). (b) Variation with h / R of the ratio of the force ratios (38) . 
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which displays the ratio of (36) to (37) , 

C b τ
(1) 
b 

C b τ
(1) 
b 

+ C w 

τ (1) 
w 

C b τ
(0) 
b 

+ C w 

τ (0) 
w 

C b τ
(0) 
b 

, (38)

as a function of h / R . We see that it is close to one over the whole

range of h / R . Thus, strikingly, the ratio of the mean inertial stress

on the bed to that on the wall can be accurately estimated from

the leading-order calculations. 

4. Sand transport 

We first review the theory of sand transport under a plane

flow, i.e. for fluid flow in the z -direction above a plane sand bed

y = 0 , with no variation in the spanwise x -direction, as discussed

by Charru et al. (2013) . We assume that the sand particles are

spherical, with diameter d , density ρp , and Stokes sedimentation

velocity 

 fall = 

(ρp − ρ) gd 2 

18 η
, (39)

where g is the acceleration due to gravity. 

It is known from experiment that sand particles on the bed sur-

face do not move unless the shear stress τ b acting on the bed ex-

ceeds a critical value, i.e., unless 

θ = 

τb 

(ρp − ρ) gd 
> θt , (40)

where the dimensionless bed shear stress θ is known as the

Shields number. For a horizontal bed, the critical Shields number

θt = θt0 ≈ 0 . 12 ( Charru et al., 2004; Ouriemi et al., 2009a ). For a

non-zero bed slope ∂ h / ∂ z , gravity pulls the grains downhill, and

this effect may be included by modifying the critical Shields num-

ber to 

θt = θt0 

(
1 + cot (χ ) 

∂h 

∂z 

)
, (41)

where χ ≈ 25 ° is the effective friction angle of the grains ( Fredsøe,

1974 ). 

If θ > θ t the grains move, and there is a flux q of grains in the

flowing bedload (per unit length in the x direction). When equilib-

rium is achieved, the volume flux q of the particles (per unit bed

width) saturates to Charru et al. (2004) 

q sat = 

c q 

1 − φ

(
πd 3 

6 

)
V fall 

d 2 
θ (θ − θt ) , θt < θ, (42a)

= 0 , 0 < θ < θt , (42b)
ith c q = 0 . 85 in the experiments and where the inclusion of the

ed solid volume fraction (1 − φ) slightly simplifies the subse-

uent equations. 

If the wall shear stress τ b varies in time or space, the parti-

le flux q differs from the local equilibrium value, though usually

ot by much. The relaxation of the particle flux towards the new

quilibrium can therefore be described by a linear equation 

 sat 
∂q 

∂t 
+ L sat 

∂q 

∂z 
= q sat (τb ) − q, (43)

here t is time, T sat is the saturation time and L sat the saturation

ength. The saturation time scale T sat is rapid (typically 1 s) com-

ared to the timescale for the growth of instabilities of the bed:

e therefore set this term to zero, so that 

 sat 
∂q 

∂z 
= q sat (τb ) − q. (44)

he concept of a saturation length L sat dates back to Bagnold (1941 ,

979) (see e.g., Andreotti et al., 2013 ). The saturation length L sat is

oorly characterized. Following Charru (2006) we assume that it is

iven by the deposition length 

 sat = c L 
γ d 

V fall 

d, (45)

ith c L = 1 . 5 from the experiments of Charru et al. (2004) and

here γ is the shear rate at the bed. Finally, mass conservation

f the layer of moving grains (known as the Exner equation) gives

for plane flow), 

∂h 

∂t 
+ 

∂q 

∂z 
= 0 . (46)

For the present case of pipe flow, both the shear stress on the

ed and the particle flux vary in the spanwise x -direction. Never-

heless, to be consistent with the simplification that the interface

etween the sand bed and the liquid is plane, we assume that the

ependence of the mean particle flux in the z -direction, q sat , on

he mean shear stress τ b is still given by (42) , i.e., q sat = q sat ( τ b ) .

hen, for pipe flow, the mass conservation Eq. (46) becomes 

∂A 

∂t 
+ 

∂(C b q ) 

∂z 
= 0 , (47)

r, using Eqs. (2) –(4) , 

∂h 

∂t 
+ 

∂ q 

∂z 
− h 

′ 
R 

cot δw 

sin δw 

q = 0 , (48)

here h ′ = ∂ h/∂ z is the bed slope. The last term in (48) accounts

or the variation of C b with h (or δw 

). Note that this term is zero

or a half-filled pipe ( δw 

= π/ 2 ). 
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A

. Area-averaged equations 

As in Section 3 , we nondimensionalize lengths by R , velocities

y W = Q/R 2 , stresses by ηW/R = ηQ/R 3 , and time by R 3 / Q , and

se the Reynolds number Re = ρW R/η (19) . We still assume that

he surface of the perturbed bed remains horizontal in the cross-

ectional ( x , y ) plane, so that the bed height h is a function only of

he z -coordinate along the axis of the pipe. 

.1. Consistent area-averaged equations 

Averaging the conservation equations over the section of the

ipe provides a useful set of simplified equations governing the

low variations of two-phase flows, see e.g., Lin and Hanratty

1986) . Such equations are widely used in engineering applications.

owever, the averaging process loses information, so that some

losure law for the shear stress must be introduced. The closure

aw may be empirical, or taken from the calculation of the first-

rder correction of the leading-order parallel flow, using an expan-

ion of the dependent variables in terms of the small-slope pa-

ameter ε = h ′ . We follow here an alternative method proposed

y Luchini and Charru (2010a , 2010b) , which provides consistent

quations (correct to first-order) without the need for full first-

rder calculations. However, a difficulty arises in the pipe flow

onsidered here because the method of Luchini and Charru gives

he total integral of the boundary shear stress acting on the fluid

ut is unable to distinguish the separate contributions of the wall

nd bed stresses. The separation of these two contributions will be

andled by an approximation discussed in Section 5.2 . 

The equations of continuity, axial momentum, and kinetic en-

rgy, when averaged over the cross-sectional area A of the liquid,

re 

∂A 

∂t 
+ 

∂ 

∂z 

∫ 
A 

w d S = 0 , (49)

e 
∂ 

∂t 

∫ 
A 

w d S + Re 
∂ 

∂z 

∫ 
A 

w 

2 d S = −
∫ 

A 

∂ p 

∂z 
d S − C w 

τ w 

− C b τ b , (50)

nd 

Re 

2 

∂ 

∂t 

∫ 
A 

w 

2 d S + 

Re 

2 

∂ 

∂z 

∫ 
A 

w 

3 d S = −
∫ 

A 

w 

∂ p 

∂z 
d S − F , (51)

here 

 = −
∫ 

A 

u . ∇ 

2 u d S = 

∫ 
A 

(∇u ) : (∇u ) d S (52)

s the rate of dissipation of energy per unit length of the pipe. 

At leading order in the small-slope parameter ε, Eqs. (49) –(51)

re satisfied by uniaxial flow with velocity w 

(0) over a sand bed

f uniform depth h equal to the local bed depth, as discussed in

ection 2 . We now seek corrections to this flow caused by slow

 ( ε) changes in the bed depth. When working to O ( ε), it suffices

o approximate the integrals on the left-hand sides of Eqs. (49) –

51) by an integral of the steady axial velocity w 

(0) at the local

ed depth h and local volumetric flow rate, 

 = 

1 

A 

∫ 
A 

w 

(0) d S (53) 

ogether with shape coefficients α (14) and β (16) of the unper-

urbed velocity profile: 

= 

1 

A w 

2 

∫ 
A 

(
w 

(0) 
)2 

d S, β = 

1 

A w 

3 

∫ 
A 

(
w 

(0) 
)3 

d S. (54) 

ote that changes in the bed height h ( z , t ) with time lead to

hanges in the local volumetric volume flow rate, so that w A is

ot necessarily equal to 1. 

We saw in Section 3 that ∂ p / ∂ z is a function only of z at O ( ε)

nd is independent of ( x , y ), and can therefore be taken outside the
ntegrals on the right-hand sides of Eqs. (50) –(51) . The averaged

qs. (49) –(51) therefore simplify to 

∂A 

∂t 
+ 

∂(A w ) 

∂z 
= 0 , (55) 

e 
∂(A w ) 

∂t 
+ Re 

∂(αA w 

2 
) 

∂z 
= −A 

∂ p 

∂z 
− C w 

τ w 

− C b τ b , (56)

nd 

Re 

2 

∂(αA w 

2 
) 

∂t 
+ 

Re 

2 

∂(βA w 

3 
) 

∂z 
= −A w 

∂ p 

∂z 
− F , (57)

orrect to O ( ε). 

Any attempt to work solely with the averaged equations of con-

inuity (55) and momentum (56) to determine variations in the

ressure gradient requires some semi-empirical closure law for the

hear stresses in (56) , and such closure laws do not usually cor-

ectly capture the O ( ε) change in the stress. For example, the re-

ulting dispersion relation for free surface waves of infinitesimal

mplitude is wrong ( Luchini and Charru, 2010a ). The shear stresses

n our bed of sand in a pipe may be obtained, of course, from

he O ( ε) calculations of Section 2 . However, Luchini and Charru

2010a ) showed that if we appeal to the averaged energy Eq. (57)

n addition to the averaged equations of continuity (55) and mo-

entum (56) , the equations yield the pressure gradient and to-

al shear force at the wall, correct to O ( ε). The analysis relies on

he fact that the rate of energy dissipation in a bounded domain

ith specified boundary conditions is minimized by the Stokes

ow satisfying the boundary conditions, so that the O ( ε) pertur-

ation to the dissipation F on the right hand side of (57) is zero.

o see this explicitly, we first note that ∇ 

2 = ∂ 2 z + ∇ 

2 
H 
, where ∇ 

2 
H 

s the Laplace operator in the cross-sectional ( x , y ) plane and ∂ 2 z u

s O ( ε2 ). Contributions to F from the velocity components in the

ross-sectional plane are similarly O ( ε2 ). We consider an axial ve-

ocity field w = w 

(0) + δw, where δw satisfies the no-slip boundary

ondition on the pipe walls and sand bed surface, and has cross-

ectional average 
∫ 

A δw d S = 0 , by (53) . The dissipation F (52) can

herefore be expressed as 

 = 

∫ 
A 

[∇ H w 

(0) . ∇ H w 

(0) + 2 ∇ H δw. ∇ H w 

(0) 
]

d S + O (ε2 ) 

= −
∫ 

A 

[
w 

(0) ∇ 

2 
H w 

(0) + 2 δw ∇ 

2 
H w 

(0) 
]

d S + O (ε2 ) 

= −w 

∂ p (0) 

∂z 
+ O (ε2 ) , (58) 

ince ∇ 

2 
H 

w 

(0) = ∂ p (0) /∂ z is uniform over the cross-section of the

ipe. Thus, up to first-order, the dissipation rate depends only on

he leading-order parallel-flow solution, so that the pressure gradi-

nt up to first-order is provided by the kinetic-energy Eq. (57) and

he leading-order parallel flow. 

We now have three equations (55) –(57) , valid to O ( ε), for w ,

 p / ∂ z and for the total shear force C w 

τw 

+ C b τ b on the boundary

f the fluid. However, the motion of particles on the surface of the

ed of sand depends upon τ b , and not on the total shear force

 w 

τw 

+ C b τ b . An approximation that allows us to obtain τ b from

 w 

τw 

+ C b τ b will be discussed in the next section. 

.2. Simplifying approximations 

.2.1. Quasi-static flow 

A general feature of the dynamics of sand beds is that the

ime scale for evolution of the bed is much larger than that for

hanges in the flowing fluid. The fluid flow can therefore be re-

arded as quasistatic, and all time derivatives in the fluid equations

eglected. The averaged equation of continuity (55) simplifies to

ecome 

 w = 1 (59) 



122 L. Girolami et al. / International Journal of Multiphase Flow 81 (2016) 113–129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

 

 

 

 

 

 

 

 

 

 

 

0 0.5 1 1.5 2
10

−2

10
−1

10
0

h

−Q̂
∂
p

(1
) /
∂
z
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Fig. 14. Scaled inertial bed stress perturbation against bed depth h . —- τ (1) 
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A  
so that the volumetric flow rate is uniform along the pipe (and

equal to unity with our choice of the velocity and length scales). 

The shape factors α and β and are well-fitted by the correla-

tions (15) and (17) shown in Fig. 6 and vary only slowly with h .

Since h varies only slowly with z , the variation of α and β with z

is very slow indeed, and can be neglected. As a result, these shape

factors can be moved outside the derivatives in (56) and (57) , and

when the time derivatives are neglected due to quasi-static flow,

these equations become 

Re α
∂ w 

∂z 
= −A 

∂ p 

∂z 
− C w 

τ w 

− C b τ b , (60)

∂ p 

∂z 
= 

∂ p (0) 

∂z 
− β

Re 

2 

∂ w 

2 

∂z 
. (61)

To obtain Eq. (60) a term w 

∂α
∂z 

has been assumed negligibly small

compared to α ∂ w 

∂z 
, which requires ∣∣∣∣1 

A 

d α

d h 

∣∣∣∣ �
∣∣∣∣ 1 

α

d A 

d h 

∣∣∣∣ = 

∣∣∣C b 
A 

∣∣∣. (62)

Since the left-hand side of (62) is typically 0.01, (see the curve fit

(15) ), we see that (62) holds except when δw 

∼ 0 . 01 and the pipe

is almost full of sand. The neglect of the variation of β with z in

(61) can be justified similarly. Note that the energy Eq. (61) implies

that the viscous pressure gradient ∂ p (0) / ∂ z is merely modified by a

Bernoulli term, which, using (59) , can be written as 

β
Re 

2 

∂ w 

2 

∂z 
= β

Re 

A 

3 

∂ A 

∂z 
= h 

′ Re 
∂ p (1) 

av 

∂z 
, (63)

where h ′ = d h/d z is the local bed slope and where we have used

(4) to define 

∂ p (1) 
av 

∂z 
= − β

A 

3 

∂A 

∂h 

= 

βC b 
A 

3 
. (64)

The above approximations may be assessed by comparing the

above scaled pressure gradient with the exact first-order perturba-

tion ∂ p (1) / ∂ z computed numerically in Section 3 . The comparison

is shown in Fig. 13 . Pressure gradients at constant Q become in-

finite as h → 2, and Fig. 13 has therefore been plotted to show
ˆ Q ∂ p (1) 

av / ∂z and ˆ Q ∂ p (1) / ∂z . This is equivalent to considering flow at

fixed pressure gradient rather than at fixed volumetric flux. 

We see in Fig. 13 that the pressure gradients determined via

the two routes are all but indistinguishable, the minor differences

originating in the neglect of the small term ∂ β/ ∂ z and use of the

approximate correlations (15) and (17) . 

5.2.2. The ratio of the force C b τ b on the bed to the force C w 

τw 

on 

the wetted wall 

Eliminating the pressure gradient in the momentum Eq. (60) by

means of (61) , we find the total shear force on the cylinder wall

and sand bed 

 w 

τ w 

+ C b τ b = −A 

∂ p (0) 

∂z 
+ Re (β − α) 

∂ w 

∂z 
. (65)

The first term on the right-hand side of (65) is the leading-order

force. The second term is the inertial correction, and we emphasize

that this term involves only leading-order quantities. However, the

area-averaged equation (65) tells us only about the inertial correc-

tion to the sum of the forces on the sand bed and on the wetted

cylinder wall. In a plane channel, it is known (by symmetry) that

the change in stress is shared equally over the top and bottom of

the channel, but here we have no such simplification. We propose

to estimate the inertial correction of τ b by assuming that the ra-

tio of the forces on the bed and the wetted wall, C b τ b /C w 

τw 

, is

the same as the ratio of the leading order forces, C b τ
(0) 
b 

/C w 

τ (0) 
w 

, as
iven by (37) . With this assumption, the inertial correction to the

ed shear stress is 

 

′ Re τ (1) 
b, av 

= 

τ (0) 
b 

Re (β − α) 

C b τ
(0) 
b 

+ C w 

τ (0) 
w 

∂ w 

∂z 
, (66)

rom which, using (59) and (4) , we find 

(1) 
b, av 

= 

β − α

A 

2 

C b τ
(0) 
b 

C b τ
(0) 
b 

+ C w 

τ (0) 
w 

= (β − α) 
4(2 sin 

2 δw 

− δw 

sin 2 δw 

) 

δw 

(2 δw 

− sin 2 δw 

) 3 

(67)

ig. 14 compares the above shear stress τ (1) 
b, av 

with the exact first-

rder correction τ (1) 
b 

as computed numerically in Section 3 , with

oth curves multiplied by ˆ Q as in Fig. 13 . The agreement is excel-

ent, except for h < 0.5. This is the range of h for which the ap-

roximation that the ratio of the perturbed bed and wall stresses

quals the ratio of the zeroth-order bed and wall stresses is poor-

st (see Fig. 12 ). 

. Sand bed dynamics and stability 

.1. The equations governing sand bed dynamics 

We collect together here the set of area-integrated equations

overning the sand bed dynamics, for slow variations of the bed

urface. We emphasize that these equations are consistent up

o O ( ε) and that they involve only the leading-order, parallel

ow solution of the full problem. The equations have been non-

imensionalized using the length, velocity and stress scales intro-

uced at the beginning of Section 5 , together with the Reynolds

umber (19) . Within the quasistatic assumption, incompressibility

59) implies 

 w = 1 , (68)
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nd gives the mean velocity w (z) for given bed profile h ( z ), via the

eometric relations ( 1 –3 ). The kinetic-energy equation then pro-

ides the pressure gradient (61) 

∂ p 

∂z 
= 

∂ p (0) 

∂z 
− β

Re 

2 

∂ w 

2 

∂z 
, (69) 

here the leading-order pressure gradient ∂ p (0) /∂ z = −1 / ̂  Q (δw 

) is

btained from Eqs. (7) –(9) . The momentum equation then provides

he total force on the pipe wall and sand bed (65) 

 w 

τ w 

+ C b τ b = −A 

∂ p (0) 

∂z 
+ Re (β − α) 

∂ w 

∂z 
, (70)

ith the shape coefficients α and β taken from the correlations

15) and (17) . 

In order to predict motion of the sand bed, we need to know

he stress τ b = τ (0) 
b 

+ h ′ Re τ (1) 
b, av 

acting on the bed, rather than the

otal viscous force C w 

τw 

+ C b τ b acting on the bed and wetted pipe

all. But the stress τ (0) 
b 

over a flat bed is known from (11) : 

(0) 
b 

= 

1 

2 ̂

 Q (δw 

) 

(
sin δw 

δw 

− cos δw 

)
, (71) 

nd the approximation discussed in Section 5.2 gives us the stress

erturbation (67) due to the non-zero slope: 

(1) 
b, av 

= (β − α) 
4(2 sin 

2 δw 

− δw 

sin 2 δw 

) 

δw 

(2 δw 

− sin 2 δw 

) 3 
. (72) 

We now turn to the equations governing the slow time evolu-

ion of the sand bed, as presented in Section 4 . Mass conservation

f the bedload layer (48) gives 

∂h 

∂t 
+ 

∂ q 

∂z 
− h 

′ cot δw 

sin δw 

q = 0 , (73)

here q is the sand flux per unit bed width (non-dimensionalised

y Q / R ). This flux obeys the relaxation Eq. (44) 

 sat 
∂ q 

∂z 
= q sat ( τ b ) − q , (74)

ith the dimensionless saturation length (45) 

 sat = c L τ b 

(d/R ) 2 

V fall /W 

, (75) 

nd the empirical saturated sand flux (42) 

q sat 

q ref 

= 

τ b 

τref 

(
τ b 

τref 

− θt0 (1 + h 

′ cot χ) 

)
, (76) 

here 

 ref = 

c q π

6(1 − φ) 

V fall d 

W R 

, τref = 

(ρp − ρ) gd 

ηW/R 

, 

θt0 = 0 . 12 , χ = 25 

◦. (77) 

n illustration of the use of the above equations is given in the

ext section. 

.2. Stability of the flat sand bed 

The above fluid and particle equations admit a steady and uni-

orm solution, with height h 0 , bed shear stress τ0 = τ (0) 
b 

(h 0 ) , and

article flux q 0 = q sat (τ0 ) . We now consider that this base solution

s perturbed so that the bed height is given by the real part of 

 = h 0 + εh 1 e 
i k (z−ct) . (78)

he mean stress on the bed becomes 

b = τ (0) 
b 

(h ) + h 

′ Re τ (1) 
b, av 

(h ) (79) 

= τ0 + ετ1 e 
i k (z−ct) + higher order terms, (80) 
ith 

1 = 

( 

∂ τ (0) 
b 

∂h 

∣∣∣∣∣
Q 

+ i k Re τ (1) 
b, av 

) 

h 1 , (81) 

here the derivative of τ (0) 
b 

is evaluated (at h = h 0 ) by means of

he analytic result (11) , and τ (1) 
b, av 

is given by Eq. (72) , again eval-

ated at h = h 0 . The corresponding saturated flux is q sat = q 0 +
q sat,1 e 

i k (z−ct) with 

 sat,1 = 

∂ q sat 

∂τb 

τ1 + i kh 1 
∂ q sat 

∂h 

′ , (82)

here the last term accounts for the effect of gravity for non-zero

lope. The actual sand flux is q = q 0 + εq 1 e 
i k (z−ct) , with, from (74) ,

 1 = 

q sat,1 

1 + i kL sat 
. (83) 

inally, the particle conservation Eq. (73) gives the dimensionless

omplex wave velocity 

 = 

q 1 
h 1 

− q 0 
cot δw 

sin δw 

. (84) 

ith the above relations, and the derivatives of q sat evaluated from

76) , we obtain 

c 

q ref /τref 

= 

2 τ0 /τref − θt0 

1 + i kL sat 

τ1 

h 1 

− i k θt0 cot χ

1 + i kL sat 
τ0 − q 0 

q ref /τref 

cot δw 

sin δw 

, 

(85) 

here by (77) 

q ref 

τref 

= 

c q π

108(1 − φ) 

(
d 

R 

)2 

� 1 , (86) 

hich is small since the particle diameter d is small compared to

he pipe radius R . 

The real part c r of c is the wave velocity (scaled by the ve-

ocity W = Q/R 2 ), whereas kc i is the growth rate (scaled by the

ime R / W ). Fig. 15 displays c r and kc i versus wavenumber, for

 sat = 0 and the dimensionless parameters given in the figure cap-

ion. These numbers correspond, for example, to a pipe of radius

 = 0 . 02 m , with oil flow ( W = Q/R 2 = 0 . 1 m/s, ρ = 10 3 kg/m 

3 ,

= 0 . 1 Pa s) over sand grains ( d = 0 . 2 mm, ρp = 2600 kg/m 

3 , c q =
 . 85 ). In the absence of the stabilizing effects of gravity ( cot χ = 0 ,

ashed curves), the wave velocity is constant ( Fig. 15 a), whereas

he growth rate kc i is positive for all wavenumbers and increases

uadratically with k ( Fig. 15 b). (If higher order terms were included

n the long wavelength expansion, the growth rate would eventu-

lly decrease and become negative for high wavenumbers ( Charru,

006 ).) At any given flow rate, the growth rate kc i is higher for

 = 1 (curves with squares) than for h = 0 . 5 (curves with circles),

s expected. Including the effect of gravity ( cot χ = 2 . 1 , solid lines)

as no effect on the wave velocity, while its diffusive effect (which

cales as k 2 ) simply changes the curvature of the curve showing

he growth rate. For h = 0 . 5 (curve with the square), gravity stabi-

izes all wavenumbers, whereas for h = 1 (curve with the circle), it

erely decreases the growth rate. 

Fig. 16 displays the effect of L sat , for h = 0 . 5 and cot χ = 0 (no

ravity stabilization) and with other parameters as in Fig. 15 . The

ave velocity ( Fig. 16 a) appears to be weakly affected by L sat .

he growth rate ( Fig. 16 b) is more sensitive: for L sat = 0 (dashed

urve), it is as in Fig. 15 ; for L sat = 0 . 085 , it is reduced but re-

ains positive (solid line); a relaxation length five times larger

i.e., L sat = 0 . 425 ) stabilizes all wavenumbers (dashed-dotted line).

hese results can be understood from Eq. (85) which gives, still for
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a b

Fig. 15. (a) Wave velocity scaled by Q / R 2 , and (b) growth rate scaled by Q / R 3 , for h = 0 . 5 ( ◦) and h = 1 ( �). - - -, cot χ = 0 (no gravity effect); —-, cot χ = 2 . 1 . Dimensionless 

parameters: h = 0 . 5 , Re = 20 , q ref = 2 . 7 × 10 −5 , θt0 = 0 . 12 and L sat = 0 . The Shields number is τ0 /τref = 0 . 31 for h = 0 . 5 , and τ0 /τref = 0 . 68 for h = 1 . 

a b

Fig. 16. (a) Wave velocity scaled by Q / R 2 , and (b) growth rate scaled by Q / R 3 , for L sat = 0 (dashed line), L sat = 0 . 085 (solid line) and L sat = 5 × 0 . 085 (dashed-dotted line). 

Parameters as in Fig. 15 , with h = 0 . 5 and cot χ = 0 (no gravity effect). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Ratio (89) of the pressure gradient −∂ p (0) /∂ z and the average bed stress 

τ 0 on the flat bed, against bed depth h . Squares � and triangles � represent scaled 

data from Figs. 5 and 6 of Takahashi and Masuyama (1991) . 
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A  

h  

t  
cot χ = 0 , 

kc i 
q ref /τref 

= 

2 τ0 /τref − θt0 

1 + (kL sat ) 2 

( 

k 2 Re τ (1) 
b, av 

− k 2 L sat 

∂ τ (0) 
b 

∂h 

∣∣∣∣∣
Q 

) 

. (87)

The growth rate is the sum of two terms: a positive part pro-

portional to Re τ (1) 
b, av 

, arising from fluid inertia, and a negative

part proportional to L sat arising from the relaxation effect. Both

terms increase monotonically with wavenumber, with the same

functional dependence. Hence, L sat does not provide any cutoff

wavenumber. Such a cutoff would arise with the next order in-

cluded in the long wave expansion, which would weaken the

quadratic increase of the inertial term, as mentioned above. 

We have checked that use of the exact first-order bed shear

stress computed numerically in Section 3 , rather than the analyt-

ical approximation (72) , does not change the velocity and growth

rate: the curves in Fig. 16 are indistinguishable. 

Finally, some comparison with experimental results is appro-

priate here. Let us return to the case of zero gravitational and re-

laxation effects ( cot χ = 0 , L sat = 0 ). The growth rate predicted by

(85) then reduces to 

kc i 
q ref /τref 

= k 2 Re (2 τ0 /τref − θt0 ) τ
(1) 
b, av 

. (88)

Since τ (1) 
b, av 

> 0 (see Fig. 14 ), Eq. (88) shows that the bed is unstable

as soon as the stress τ0 = τt0 = τref θt0 and particles begin to move.

At this threshold the pressure gradient is τt0 [(−∂ p (0) /∂ z) /τ0 ] ,

where the ratio of the pressure gradient to bed stress is, by (11) , 

−∂ p (0) /∂ z 

τ0 

= 

2 δw 

sin δw 

− δw 

cos δw 

, (89)
hown in Fig. 17 . For any given sand (i.e., fixed τ t 0 ), the curve

n Fig. 17 shows (to within the constant of proportionality τ t 0 )

he pressure gradient required to create motion of the bed of

and, as a function of the bed depth h . Also shown in Fig. 17

re scaled experimental data for the pressure gradient at which

he bed becomes unstable, taken from Figs. 5 and 6 of Takahashi

nd Masuyama (1991) . The data correspond to particles of crushed

ock (diameter 2.18 mm and specific density 2.74) in pipes of

iameter 2 R = 49 . 7 mm (squares) and 2 R = 39 . 7 mm (triangles).

ssuming a Shields parameter 0.0 6 6, we multiply the measured

ydraulic gradients by factors of 100 and 80, respectively, to obtain

he non-dimensional data in Fig. 17 . Although both experimental
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nd theoretical critical pressure gradients increase with bed depth

 , the experimental values increase somewhat more rapidly: we

ave no explanation for this. We may re-write (89) to give the di-

ensional pressure gradient required for particles to move (and

he bed to be unstable) when the bed stress is τ0 = τref θt0 : 

∂ p (0) 

∂z 

(
ηQ 

R 

4 

)
= 

2 δw 

sin δw 

− δw 

cos δw 

(ρp − ρ) gd 

R 

θt (90) 

here θ t is the Shields parameter (41) . 

Including the effects of gravity and bedload relaxation ( cot χ  =
 , L sat  = 0 ) would make little qualitative change to the above re-

ults (although the critical Shields number for instability might

ow be larger than θ t 0 ). Any attempt to make a more detailed

omparison between theory and experiment would strongly de-

end on the choice of the saturation length, which controls the

ost amplified wavenumber and is still known only poorly ( Charru

t al., 2013 ). 

. Summary and conclusions 

We have extended existing analytic results for flow over a uni-

orm sand bed, in order to predict the flow corrections that oc-

ur when the height of the sand bed is no longer uniform along

he length of the pipe, namely: (i) the Stokes secondary flow in

he cross-section and (ii) the inertial longitudinal flow. (Note that

econdary flows do not occur for laminar plane flow above a uni-

orm sand bed.) In particular, the inertial correction to the stress

epends not only on the height h of the sand bed, but also on the

ed slope h ′ . As a result, the stresses acting on a bed perturba-

ion of the form h ∝ sin ( kz ) need not be in phase with h , and bed

nstabilities can occur. A noteable result, useful for practical pur-

oses, is that the relative contributions of the mean inertial stress

ver the bed and over the wall to the total inertial force on the

uid can be accurately estimated from the leading-order, parallel

ow calculations. 

Various restrictions have been noted in the course of the anal-

sis. The unperturbed flow above the unperturbed, uniform sand

ed must be laminar, which requires the Reynolds number ρQ /( R η)

19) to be below the threshold for turbulence. The non-circular

orm of the fluid cross-section suggests that this criterion should

e based on the hydraulic diameter and thus the lengthscale R in

he Reynolds number should be replaced by the wetted perime-

er C b + C w 

(2) . The restriction that the perturbed flow should be

aminar requires only h ′ Re � 1, where the bed slope h ′ , typically

 ( d / R ), can be considered arbitrarily small in a stability analysis.

his condition is therefore automatically satisfied when studying

he onset of instability. Finally, we have assumed that the stress

n the surface of the bed is such that there is a thin bedload layer

f moving particles, rather than a completely static bed or a thick

ayer of suspended particles. This marks the changeover between a

tatic bed and the moving bed that we have shown to be unstable,

nd occurs at the pressure gradient given by (90) . 

The area-averaged model of Luchini and Charru (2010a ), com-

ined with the approximation for the distribution of stress pertur-

ations over the pipe wall and sand bed, leads rapidly to predic-

ions of the average stress perturbation on the sand bed, without

he need for the full analysis of Section 3 . Although these area-

veraged predictions require only knowledge of the leading-order

arallel flow solution for the fluid flow, they are valid up to first-

rder in the small-slope parameter. The predicted perturbations of

he pressure gradient and bed stress are very close to those com-

uted from the full perturbation equations. 

The averaged equations, which include the kinetic-energy equa-

ion as well as the equations of continuity and momentum, form a

losed set of consistent 1D equations which should be useful for

redicting sand motion in long pipes, e.g., in the petroleum in-
ustry. In particular, they provide a rapid route for predicting the

rowth of instabilities of the sand bed. The results may equally

ell be applied to other problems that depend upon the shear rate

t the bed/liquid interface, e.g., heat transfer. Since the dynamics of

he sand bed are slow, the bed has been assumed quasi-static, but

s long as the rate of growth of instabilities is small, there is no

eason why the bed cannot be replaced by viscous fluid, thereby

nabling an investigation of the rate of growth of instabilities on a

uid/fluid interface. 
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ppendix A. Flow over a uniform sand bed 

.1. The axial velocity 

Stratified flow of two fluids in a pipe has been well stud-

ed ( Bentwich, 1964; Ranger and Davis, 1979; Brauner et al.,

996; Biberg and Halvorsen, 20 0 0 ). We follow the presentation of

iberg and Halvorsen (20 0 0) , with slightly different notation, since

ere we consider solid (at rest) and liquid, whereas Biberg and

alvorsen (20 0 0 ) were interested in the flow of liquid and gas. 

We use a bipolar coordinate system ( ξ , ζ ), as described by

iberg and Halvorsen (20 0 0) , with 

 = 

R sin δb sinh ξ

cosh ξ + cos ζ
, y = 

R sin δb sin ζ

cosh ξ + cos ζ
. (91)

ote that this is not the standard definition used by others. The

urface ζ = 0 corresponds to the sand/liquid interface, ζ = δw 

cor-

esponds to the wetted wall of the pipe, and ζ = −δb < 0 corre-

ponds to the portion of the pipe wall in contact with the sand

ed. The scale factors for this coordinate system are 

 ζ = h ξ = 

R sin δw 

cosh ξ + cos ζ
(92) 

nd the Jacobian is 

 = 

∂(x, y ) 

∂(ξ , ζ ) 
= 

R 

2 sin 

2 δw 

( cosh ξ + cos ζ ) 2 
. (93) 

To find the liquid velocity we need to solve the Poisson Eq. (5) .

 particular solution of (5) is 

 

p = 

G 

4 η
(R 

2 − r 2 ) = 

GR 

2 sin δb sin (δw 

− ζ ) 

2 η( cosh ξ + cos ζ ) 
, (94)

hich corresponds to Poiseuille flow along a pipe in the absence of

ny sand bed. This velocity field (94) satisfies the no-slip boundary

ondition on the pipe wall ζ = δw 

, but not on the surface of the

and, ζ = 0 . To remedy this, we seek a solution w = w 

h of the ho-

ogeneous equation ∇ 

2 w 

h = 0 , with values on the boundary such

hat w 

p + w 

h satisfies both the governing Eq. (5) and the no-slip

oundary conditions. 

In the bipolar coordinate system, w 

h satisfies the Laplace equa-

ion 

∂ 2 w 

h 

∂ξ 2 
+ 

∂ 2 w 

h 

∂ζ 2 
= 0 , (95) 

nd the no-slip condition on the pipe wall becomes 

 

h = 0 on ζ = δw 

. (96) 

n order that w 

p + w 

h satisfies the no-slip condition on the
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q  
interface ζ = 0 , we require 

w 

h = − GR 

2 sin 

2 δw 

2 η(1 + cosh ξ ) 
= − GR 

2 sin 

2 δw 

4 η cosh 

2 
(ξ/ 2) 

on ζ = 0 . (97)

We now take Fourier cosine transforms, using 

˜ f (ω) = 

2 

π

∫ ∞ 

0 

f (ξ ) cos ωξ d ξ , (98a)

f (ξ ) = 

∫ ∞ 

0 

˜ f (ω ) cos ω ξ d ω . (98b)

The Fourier transform of the Laplace Eq. (95) gives 

∂ 2 ˜ w 

h 

∂ζ 2 
− ω 

2 ˜ w h = 0 . (99)

The boundary condition (96) on the pipe wall becomes 

˜ w 

h = 0 on ζ = δw 

, (100)

and the boundary condition (97) on the sand bed transforms to 

˜ w 

h = −GR 

2 sin 

2 δw 

η

(
ω 

sinh ωπ

)
on ζ = 0 , (101)

where we have used the relation 

2 

π

∫ ∞ 

0 

sech 

2 
(ξ/ 2) cos ω ξ d ξ = 

ω 

sinh ω π
. (102)

Solutions of the transformed Laplace Eq. (99) that satisfy the no-

slip boundary condition (100) on the pipe wall take the form 

˜ w 

h = −GR 

2 sin 

2 δw 

η

ω sinh [ ω(δw 

− ζ )] 

sinh ω δw 

sinh ω π
. (103)

Taking the inverse transform (98b) of (103) , and combining with

the particular solution w 

p (94) , of (5) , we find 

w = w 

p + w 

h = 

GR 

2 sin δw 

sin (δw 

− ζ ) 

2 η( cosh ξ + cos ζ ) 
− GR 

2 sin 

2 δw 

η

×
∫ ∞ 

0 

(
ω sinh [ ω(δw 

− ζ )] 

sinh ω δw 

sinh ω π

)
cos ω ξ d ω . (104)

A.2. The volumetric flow rate 

Ranger and Davis (1979) evaluate the volumetric flow rate Q in

a two-fluid system, and so here we merely indicate how the anal-

ysis proceeds when the bed of sand is at rest. 

The expression (104) for the liquid velocity w consists of two

terms. The first, w 

p , is simply Poiseuille flow through a pipe of

radius R , and the corresponding contribution to the flow rate can

be obtained by integration using polar coordinates ( r , ψ). If δw 

<

π/ 2 , we define r 1 = R cos δw 

/ cos ψ and determine the volumetric

flow rate 

Q 

p = 

G 

2 η

∫ δw 

0 

d ψ 

∫ R 

r 1 

(R 

2 − r 2 ) r d r 

= 

GR 

4 

8 η

[
δw 

+ 

sin 4 δw 

12 

− 2 

3 

sin 2 δw 

]
. (105)

If δw 

> π/ 2 , we perform this same integration over the region oc-

cupied by the sand. The integral over the entire circular cross-

section is G πR 4 /(8 η), and so the integral over the region occupied

by liquid is 

GπR 

4 

8 η
− GR 

4 

8 η

[
δb + 

sin 4 δb 

12 

− 2 

3 

sin 2 δb 

]
. (106)

Setting δb = π − δw 

, we see that (106) is identically equal to the

expression (105) for Q 

p , which therefore holds for all δw 

. 
We now consider the second term u h in the expression (104)

or w, with a contribution to the volumetric flow rate 

 

h = −GR 

2 sin 

2 δw 

η

∫ δw 

0 

d ζ

∫ ∞ 

−∞ 

R 

2 sin 

2 δw 

d ξ

( cosh ξ + cos ζ ) 2 

×
∫ ∞ 

0 

(
ω sinh [ ω(δw 

− ζ )] 

sinh ω δw 

sinh ω π

)
cos ω ξ d ω . (107)

e note that 

1 

π

∫ ∞ 

0 

sin a cos (xξ ) d ξ

( cosh ξ + cos a ) 
= 

sinh ax 

sinh πx 
, a < π. (108)

ividing both sides of (108) by sin a and differentiating with re-

pect to a , we obtain 

1 

π

∫ ∞ 

0 

sin a cos (xξ ) d ξ

( cosh ξ + cos a ) 2 
= 

x cosh ax 

sin a sinh πx 
− cos a sinh ax 

sin 

2 
a sinh πx 

. (109)

traightforward manipulations eventually lead to 

 

h = 

GR 

4 sin 

4 δw 

η

[
cot δw 

6 

− I 

]
, (110)

here 

 = 

∫ ∞ 

0 

πω 

3 cosh ωδw 

d ω 

sinh ω δw 

sinh 

2 ω π
. (111)

he total volumetric flow rate is therefore 

 = Q 

p + Q 

h = 

GR 

4 

η

[
δw 

8 

− sin 2 δw 

24 

− sin 4 δw 

96 

− sin 

4 δw 

I 

]

= 

GR 

4 

η
ˆ Q (δw 

) . (112)

The integral I (111) can be evaluated numerically, but it proves

seful to have an approximate, analytic expression. If δw 

� π (pipe

early full of sand), the convergence of I is ensured by the expo-

ential term sinh 

2 ωπ in the denominator. We appeal to Watson’s

emma and expand coth ωδw 

as a power series in ωδw 

. The term

y term integration of (111) can be performed using 

 ∞ 

0 

x 2 m d x 

sinh 

2 
ax 

= 

π2 m 

a 2 m +1 
| B 2 m 

| , (113)

here the Bernoulli numbers B 2 = 1 / 6 , B 4 = −1 / 30 , B 6 = 1 / 42 ,

 8 = −1 / 30 . This gives the asymptotic expansion 

 ≈ I small = 

1 

6 δw 

+ 

δw 

90 

− δw 

1890 

+ 

δw 

14175 

+ · · · , δw 

� π. (114)

he relative error (I small − I) /I < 0 . 019 for δw 

< 2 . 22 , and is only

.17 even when δw 

= π . However, in the expression (112) for Q , I

s multiplied by sin 

4 δw 

, and makes a negligible contribution to Q

n the limit δw 

→ π . The estimate Q small obtained using the ap-

roximation I small has a relative error | Q − Q small | /Q < 0 . 0034 . 

When δw 

� 1 the height of the sand bed is h ≈
 

(
2 − δ2 

w 

/ 2 + · · ·
)
. Expanding (112) , and using the expansion

114) , we find 

 ≈ GR 

4 

105 η
δ7 

w 

≈ GR 

4 

105 η
2 

7 / 2 

(
2 − h 

R 

)7 / 2 

, δw 

� 1 . (115)

However, the case δb � π when there is only a little sand at

he bottom of the pipe is important, and it is desirable to know

ow the pressure gradient is changed by the presence of a small

uantity of sand. We therefore seek an expansion of the integral in
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110) about the limit δb = π − δw 

� 1 , using 

oth (ω π − ω δb ) = coth ω π + 

ω δb 

sinh 

2 ω π
+ ω 

2 δ2 
b 

cosh πω 

sinh 

3 πω 

+ · · · . 

(116) 

e again appeal to Watson’s lemma to expand the integrand in

111) and integrate term by term, which leads to the approxima-

ion 

 ≈ I big = 

1 

4 π
+ δb 

(
1 

3 π2 
− 1 

45 

)
+ δ2 

b 

(
5 

12 π3 
− 1 

36 π

)
+ · · · , 

δb = π − δw 

� π. (117) 

n the limit δb � 1, the depth of the sand bed is h ≈ Rδ2 
b 
/ 2 . Ex-

anding (112) , and using (117) , we find 

 ≈ GR 

4 

η

(
π

8 

− δ3 
b 

6 

+ · · ·
)

≈ GR 

4 

η

( 

π

8 

− 1 

6 

(
2 h 

R 

)3 / 2 

+ · · · . 

) 

(118) 

he asymptotic expansion I big is only useful for small values of δb ,

ith (I − I big ) /I < 0 . 019 for δw 

> 2 . 22 . 

One might suppose that modern computational power has

liminated the need for simple approximations such as those pre-

ented above. Nevertheless, they remain useful, for example when

sing iterative methods to solve inverse problems in which the bed

eight h is unknown ( Biberg, 1999, 2002 ). In Section 3 we need the

erivative d Q /d h , and this can be found easily and rapidly, with ad-

quate accuracy, by differentiation of (110) and of the approxima-

ion (114) . 

.3. Wall shear stress 

The shear stresses on the circular wall of the pipe ( ζ = δw 

) and

n the flat sand bed ( ζ = 0 ) are discussed by Biberg and Halvorsen

20 0 0) . Both of these surfaces are surfaces of constant ζ , so the

hear stress is 

ζ z = 

η

h ζ

∂u z 

∂ζ
(119) 

ith scale factor h ζ given by (92) . Hence 

ζ z = 

GR 

2 

( cosh ξ + cos ζ ) 

[
sin (δw 

− ζ ) sin ζ

( cosh ξ + cos ζ ) 2 
− cos (δw 

− ζ ) 

cosh ξ + cos ζ

]
+ GR sin δw 

( cosh ξ + cos ζ ) 

×
∫ ∞ 

0 

(
ω 

2 cosh [ ω(δw 

− ζ )] 

sinh ω δw 

sinh ω π

)
cos ω ξ d ω . (120) 

he total force on the sand bed, ζ = 0 , is 

 b = 2 

∫ ∞ 

0 

R sin δw 

cosh ξ + cos ζ
τζ z 

∣∣
ζ=0 

d ξ

= GR 

2 sin 

2 δw 

∫ ∞ 

0 

d ξ

∫ ∞ 

0 

2 ω 

2 cosh ωδw 

sinh ω δw 

sinh ω π
cos ωξ d ω 

− GR 

2 

2 

∫ ∞ 

0 

sin 2 δw 

d ξ

cosh ξ + 1 

. (121) 

o evaluate the first integral in (121) , we set ω 

′ = 0 in the inver-

ion rule for Fourier cosine transforms, 

˜ f (ω 

′ ) = 

2 

π

∫ ∞ 

0 

∫ ∞ 

0 

˜ f (ω) cos (ω 

′ ξ ) cos (ωξ ) d ω d ξ , (122)

o obtain 

 ∞ 

d ξ

∫ ∞ ω 

2 cosh ωδw 

sinh ω δw 

sinh ω π
cos ωξ d ω = 

1 

2 δw 

. (123) 

0 0 
he total force on the sand bed (121) is therefore 

 b = GR 

2 

(
sin 

2 δw 

δw 

− sin 2 δw 

2 

)
(124) 

nd the mean stress is 

b = 

F b 
C b 

= 

GR 

2 sin δw 

(
sin 

2 δw 

δw 

− sin 2 δw 

2 

)
. (125) 

The total force on the wetted portion of the circular wall is 

 w 

= −2 

∫ ∞ 

0 

R sin δw 

cosh ξ + cos ζ
τζ z 

∣∣
ζ= δw 

d ξ

= 

∫ ∞ 

0 

GR 

2 sin δw 

d ξ

cosh ξ + cos δw 

− GR 

2 sin 

2 δw 

∫ ∞ 

0 

d ξ

∫ ∞ 

0 

2 ω 

2 cos ωξ d ω 

sinh ω δw 

sinh ω π
. (126) 

fter again using the inversion result (122) , we find that the force

n the wall is 

 w 

= GR 

2 

(
δw 

− sin 

2 δw 

δw 

)
(127) 

nd the mean stress is 

w 

= 

F w 

C w 

= 

GR 

2 δw 

(
δw 

− sin 

2 δw 

δw 

)
. (128) 

The total force on the boundary of the liquid is 

 b + F w 

= GR 

2 

(
δw 

− sin 2 δw 

2 

)
= GA, (129)

here A (1) is the cross-sectional area of the liquid-filled portion

f the pipe. 

When δw 

� 1 and the pipe is almost full of sand, we see from

125), (128) and (115) that 

b ≈ τ w 

≈ GR 

δ2 
w 

6 

≈ G 

3 

(2 R − h ) . (130)

.4. A pipe with no sand 

When there is no sand at all, the fluid velocity in the pipe is

he Poiseuille parabolic velocity profile (94) . The volumetric flow

ate is Q ns = πGR 4 / (8 η) and the mean velocity is 

 = 

W 

π
= 

Q ns 

πR 

2 
= 

GR 

2 

8 η
. (131) 

he mean squared velocity is 

 

2 = 

∫ 
w 

2 d S 

A 

= 

G 

2 R 

4 

48 η2 
, (132) 

o that 

ns = 

w 

2 

w 

2 
= 

4 

3 

. (133) 

imilarly 

 

3 = 

∫ 
w 

3 d S 

A 

= 

G 

3 R 

6 

2 

8 η3 
and βns = 

w 

3 

w 

3 
= 2 . (134)

.5. A pipe almost full of sand, δw 

� π

When δw 

� 1 , we may approximate the thin space occupied by

iquid as a thin slot with local height 

 = 

R 

[
δ2 

w 

− (x/R ) 2 
]
. (135) 
2 
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The cross-sectional area A (1) of the portion of the pipe filled with

liquid is 

A = R 

2 

[
δw 

− sin 2 δw 

2 

]
≈ 2 R 

2 δ3 
w 

3 

, δw 

� 1 . (136)

The fluid velocity in a uniform slot of height H is 

w = 

G 

2 η
y (H − y ) , (137)

with local volumetric flow rate 

q = 

∫ H 

y =0 

w d y = 

GH 

3 

12 η
. (138)

The total flow of liquid in the thin slot is 

Q = 2 

∫ Rδw 

0 

q (x ) d x = 2 

∫ Rδw 

0 

GR 

3 

96 η

[
δ2 

w 

− (x/R ) 2 
]3 

d x = 

GR 

4 

105 η
δ7 

w 

, 

(139)

in agreement with the limit (115) found previously. The mean ve-

locity is 

w = 

W R 

2 

A 

= 

Q 

A 

≈ GR 

2 δ4 
w 

70 η
. (140)

Further straightforward integration leads to 

w 

2 = 

∫ 
w 

2 d S 

A 

= 

G 

2 R 

4 δ8 
w 

3465 η2 
and α = 

w 

2 

w 

2 
= 

140 

99 

, (141)

so that, after scaling by the value αns (133) for Poiseuille flow in a

circular cylinder with no sand, 

α

αns 
= 

35 

33 

= 1 . 0 60 6 . (142)

Similarly 

w 

3 = 

∫ 
w 

3 d S 

A 

= 

G 

3 R 

6 δ12 
w 

150150 η3 
and β = 

w 

3 

w 

3 
= 

980 

429 

, (143)

so that 

β

βns 
= 

490 

429 

= 1 . 14219 . (144)

The first-order inertial pressure gradient perturbation can be

obtained from the rate of change of kinetic energy ( Luchini and

Charru, 2010a ): 

Q 

∂ p (1 i ) 

∂z 
= − ∂ 

∂z 

[ 
ρ

2 

A w 

3 

] 
= − ∂ 

∂z 

[
735 ρQ 

3 

286 R 

4 δ6 
w 

]

= 

d δw 

d z 

2205 ρQ 

3 

143 R 

4 δ7 
w 

= −h 

′ 2205 ρQ 

3 

143 R 

5 δ8 
w 

. (145)

Hence 

∂ p (1 i ) 

∂z 
= −

(
Qρ

Rη

)
21 Gh 

′ 
143 δw 

= −
(

Qρ

Rη

)
Gh 

′ 
(2 − h/R ) 1 / 2 

21 

143 

√ 

2 

. (146)

The first-order inertial correction to the momentum balance gives

 b τ
(1) 
b 

+ C w 

τ (1) 
w 

− A 

∂ p (1 i ) 

∂z 
= 

∂ 

∂z 

[
ρA w 

2 
]
. (147)

In the limit δw 

→ 0 , the mean inertial stress perturbations on the

two sides of the slot become 

τ (1) 
b 

= τ (1) 
w 

= 

∂ p (1 i ) 

∂z 

A 

4 Rδw 

+ 

(
Qρ

R 

2 η

)
GRh 

′ δw 

66 

= 

(
Qρ

R 

2 η

)
GRh 

′ 4 

√ 

2 

429 

(2 − h/R ) 1 / 2 . (148)
The maximum slot height, at x = 0 , is 

 max = 2 R − h = Rδ2 
w 

/ 2 , (149)

nd the maximum velocity is 

 max = 

GH 

2 
max 

8 η
= 

105 Q 

32 R 

2 δ3 
w 

. (150)

rom the scaling (146) for ∂ p (1i) / ∂ z as δw 

→ 0 , we conclude that 

 

(1 i ) ∼
(

Qρ

R 

2 η

)
h 

′ Q 

R 

2 δ4 
w 

. (151)

hus, as δw 

→ 0 , the inertial correction w 

(1 i ) increases more

apidly than the maximum value w max (150) of the unperturbed

elocity w 

(0) , and the perturbation expansion (20) eventually fails.

lthough our Reynolds number (19) , based on Q / R 2 , is constant, a

eynolds number based on the axial velocity within the sand-filled

ipe becomes large as the area A (136) available for flow becomes

mall. 

ppendix B. Assessment of the quasi-static assumption 

The stability analysis of Section 6 was performed under the

ssumption of quasi-static flow, with time appearing only in the

oundary condition at the bed. This assumption appears justified

 posteriori in view of the smallness of the growth rate, of order

0 −6 W/R, which means that the time scale of bed variations is 10 6 

arger than the hydrodynamic time scale R / W . As a further con-

rmation, we evaluate here the correction to the complex wave

elocity related to the flow unsteadiness. 

The perturbation in bed height h 1 (78) grows as e −i kct , and the

elocity of the bed surface is 

∂h 

∂t 
= −εh 1 i kc e i k (z−ct) . (152)

here must in consequence be a perturbation Q 1 of the volumetric

ow rate of liquid, satisfying 

∂Q 1 

∂z 
= 2 sin δb (1 − φ) 

∂h 

∂t 
= −2 sin δb (1 − φ) εh 1 i kc e i k (z−ct) , 

(153)

here the factor 2sin δb represents the (non-dimensional) width

f the sand bed in the x direction, and the factor (1 − φ) takes

ccount of liquid that is trapped in the newly created pores in the

rowing bed of sand. We integrate (153) to obtain 

 1 = −2 sin δb (1 − φ) εh 1 c e 
i k (z−ct) . (154)

ince in laminar flow the mean stress τ 0 is proportional to the

ow rate Q , the mean stress is perturbed by this change in flow

ate, and becomes 

0 ( 1 + Q 1 ) . (155)

n consequence, an additional term 

2(2 τ0 /τref − θt0 ) 

1 + i kL sat 
τ0 sin δb (1 − φ) c. (156)

s added to the right-hand side of Eq. (85) for c , and this term is

mall compared to other terms in (85) when c is small. 
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