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To best utilize the electrical resistivity data and slope intensity derived from aDigital ElevationModel, the kriging
spatial components techniquewas applied to separate the nuggets and small- and large-scale structures for both
resistivity and slope intensity data. The spatial structures in the resistivity and slope intensity data, which are
poorly correlated with soil thickness (ST), are then filtered out prior to integrating the resistivity data and
slope intensity into soil thickness estimation over a 12 ha area located in the south-western Parisian Basin
(France). ST was measured at 650 locations over the study area by manual augering. Twenty percent of the ob-
servations (131 points) were randomly selected to constitute the validation dataset. The remaining 80% of the
dataset (519 points) was used as the prediction dataset.
The resistivity data represent a set of 7394measurement points for each of the three investigated depths over the
study area. The methodology involves successively (1) a principal component analysis (PCA) on the electrical
measurements and (2) a geostatistical filtering of the small-scale component and noise in the first component
(PC1) of the PCA. The results show that the correlation between ST and PC1 is greatly improved when the
small-scale component and noise are filtered out, and similarly, the correlation between ST and slope intensity
is greatly improved once the geostatistical filtering is carried out on the slope data. Thus, the large scales of
both slope intensity and the electrical resistivity's PC1 were used as external drifts to predict ST over the entire
study area. This prediction was compared with ordinary kriging and kriging either with a large scale of slope in-
tensity orwith a large scale of the electrical resistivity's PC1 taken as an external drift. The first prediction of ST by
ordinary kriging, which was considered as our reference, was also compared to those achieved by kriging using
the raw secondary variables: PC1 and slope intensity as external drifts; slope intensity as an external drift; and
PC1 as an external drift. The results indicate a reasonably low bias of prediction for all of the methods, in partic-
ular in the case of kriging using the large scales of both slope intensity and PC1 as external drifts. The root mean
square error shows that kriging accounting for the large scales of two secondary exhaustive variables is themost
accurate prediction method. The relative improvement of the accuracy is at least equal to 29% between the ap-
proach accounting for both large scale components of secondary attributes in the spatial estimates of ST and
the other approaches of estimates considered in this study.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Soil thickness is one of the most important input parameters for
hydroecological models (e.g., Tesfa et al., 2009; Wahren et al., 2016).
Soil thickness also provides an indication of the available water capacity
and exerts major control on many physical and biological processes oc-
curring in soils (e.g., Gessler et al., 1995; Diek et al., 2014; Akumu et al.,
2016). Consequently, the accurate representation of soil thickness at
cherche Agronomique (INRA),

nnane).
scales relevant to these processes is increasingly important for use
in distributed simulation models of hydrology and ecology. Soil thick-
ness is highly variable spatially and is laborious, time consuming and
difficult to practically measure, even for a modestly sized watershed
(e.g., Dietrich et al., 1995; Afshar et al., 2016). Thus, there is a need for
models that can predict the spatial pattern of soil thickness. Abundant
and accessible ancillary information, such as electrical resistivity and at-
tributes derived from a Digital Elevation Model, is widely used to im-
prove the estimates of a sparse target variable, such as soil thickness
(e.g., De Benedetto et al., 2012; Besalatpour et al., 2013; Mehnatkesh
et al., 2013). Such approaches assume that relevant relationships exist
between the target variable and ancillary variables. Unfortunately,
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good correlation between electrical resistivity measurements and soil
properties, as observed in the laboratory or documented in the litera-
ture, may not be reproduced in field data because of differences in the
measurement supports of soil properties and resistivity data
(e.g., Chilès and Guillan, 1984; Ma and Royer, 1988; Bourgault, 1994;
Coscia et al., 2012; Minsley et al., 2012; Davydenko and Grayver,
2014). Such a finding is often observed between the soil properties
and terrain attributes derived from a Digital Elevation Model (e.g., Zhu
and Lin, 2011; Kim and Zheng, 2011).

It is also well-established that any soil property measured at specific
locations in space is a result of several physical, chemical and biological
processes. Some processes can operate only at small distances
(e.g., biological activities), whereas others may act over larger distances
(e.g., weathering of parent material). In geostatistical terminology, the
combined effects of different sources of spatial variation produce
variograms of the considered properties with nested structures, provid-
ed that they act at distinct spatial scales.

Thanks to methods such as factorial kriging (Matheron, 1982;
Goovaerts, 1997; Wackernagel, 1998), the spatial components of a
nested variogram can be estimated and mapped separately. This
geostatistical technique was first used in geochemical exploration to
distinguish anomalies (Sandjivy, 1984). The same technique was ap-
plied to image restoration, filtering and lineament enhancement by
Ma and Royer (1988), whereas Oliver et al. (2000) used factorial kriging
to separate short-range spatial components from long-range compo-
nents in SPOT images. Van Meirvenne and Goovaerts (2002) applied
factorial kriging (FK) to the filtering of synthetic aperture radar (SAR)
images, strengthening relationships with land characteristics such
as topography and land use. Goovaerts et al. (2005) applied this tech-
nique to detecting anomalies and patches on high spatial resolution
hyperspectral imagery. In addition, numerous applications of factorial
kriging (Goulard and Voltz, 1992; Goovaerts and Webster, 1994;
Webster et al., 1994; Dobermann et al., 1995, 1997; Bocchi et al.,
2000; Castrignano et al., 2000; Lin, 2002; Bourennane et al., 2003,
2004, 2012; de Fouquet et al., 2011; Milne et al., 2012; Allaire et al.,
2012) have shown that approaches in which all sources of variation
are mixed (e.g., correlation analysis, common principal component
analysis and multi-linear regression) blur the real relationships among
variables, as they average out distinct changes in the correlation struc-
tures occurring at different spatial scales and they included the micro-
scale variations. The filtering of the different components often
discloses interesting correlations between variables changing as a func-
tion of spatial scale. Such filtering leads to an enhancement of relation-
ships between the studied variables. Small prediction errors of the
target variable are expected as the correlation between a target variable
and explanatory variable increases.

In this paper, the explanatory variables are electrical resistivity
measurements and slope intensity. The choice of electrical resistivity
measurements and slope intensity derived from a Digital Elevation
Model for the enhancement of the spatial estimation of soil
thickness was guided by the fact that several studies (e.g., Bourennane
et al., 1996, 1998; Herbst et al., 2006; Besson et al., 2010) have
shown that soil thickness is related to both electrical resistivity and
slope intensity. A shallow soil is generally less conductive than a thicker
soil, and high slope intensity is commonly associated with a shallow
soil.

This paper investigates how spatial prediction can be improved by
capitalizing on the better correlation between variables at specific spa-
tial scales. The final objective of this paper is to confirm the generic as-
pect of the approach deployed here. In fact, in a previous paper
(Bourennane et al., 2012), we used a similar approach to improve the
spatial estimates of soil water content based on electrical resistivity
data. The major differences between the two papers concern the pedo-
logical context, as well as the target variable, and the number of auxilia-
ry variables (two instead of one) used for spatial estimates of the target
variable.
The objective of this paper was examined through the spatial esti-
mation of soil thickness (ST), punctually measured over 12 ha in the
center of France, using as external drifts in kriging equations both elec-
trical resistivity measurements (ARP) and slope intensity. Both external
drifts were exhaustively measured over the study area. The basic idea is
to replace the values of ARP and slope intensity in the kriging equations
by the values of spatial components that are themost strongly correlat-
ed with the soil thickness. The performance of soil thickness mapping
was analyzed using a validation dataset.

2. Materials and methods

2.1. Location of the study area and physiographic settings

The field study was carried out on a 12 ha southeast-facing hillslope
located near the village of Seuilly (south-western Parisian Basin,
47°08.31′N, 0°10.97′E). The elevation of the study area ranges from
41 m to 80 m, and the slope length is approximately 600 m. The study
area is composed of the following sedimentary bedrocks from down-
slope to upslope: Lower Turonian white chalks, Middle Turonian
white chalks and Upper Turonian yellow sandy limestones (Alcaydé
et al., 1989; Bellemlih, 1999). The main soils observed in the study
area are calcaric Cambisols, epileptic calcaric Cambisols and colluvic
Cambisols (Boutin et al., 1990; FAO, 1998).

2.2. Data acquisition

2.2.1. Topography
TwoDGPSs (Trimble® ProXRS)were used as a base and amobile re-

corder. The coordinates and elevations of 1550 points were obtained by
post-treatment of the data. A Digital Elevation Model (DEM) was esti-
mated over a two-meter grid. Finally, topographic attributes, such as
the slope intensity (Fig. 1a), were derived from the DEM through the al-
gorithms implemented in the GIS software ArcGis 9.3.1®

2.2.2. Soil thickness
Soil thicknesswasmeasured bymanual augering at 650 different lo-

cations over the study area. The soil thickness was defined as the sum-
mation of the A and B horizons, i.e., the depth of the upper saprolite
limit. Differentiation between the B and C horizons was relatively easy
because C horizons are often white and the transition is sharp. Two
sampling schemes were established to consider the short-distance
variability of soil thickness, especially when associated with linear
anthropogenic landforms (Bollinne, 1971; Macaire et al., 2002;
Salvador-Blanes et al., 2006; Chartin et al., 2011). The two sampling
schemeswere defined as follows. A total of 502 soil augeringswere con-
centrated on the more relevant linear landforms (lynchets and undula-
tions) observed in the study area (Chartin et al., 2011; Bourennane et al.,
2014). An additional 148 soil augerings were performed tomeasure the
soil thickness variation over all the study area. For that purpose, a point
was sampled randomly in each square of a 25 m × 25 m grid over
the entire study area (Fig. 1b). Twenty percent of the observations
(131 points) were randomly selected to constitute a validation dataset.
The remaining 80% of the dataset (519 points) was used as a prediction
dataset.

2.2.3. Electrical resistivity measurements
An Automatic Resistivity Profiling (ARP) survey was conducted

within the survey site. The device used involves three arrays. Each
array is composed of four wheels that are metallic probes; two are
used to pass current into the soil, and the other two are used to record
the electrical potentials of the soil. The spacing between the current
probes and the potential probes is 0.5 m for the first array, 1.0 m for
the second array, and 2.0 m for the third array. Thus, for each measure-
ment point, three apparent resistivity values (namely, ARP1, ARP2
and ARP3) were computed, corresponding to three proxy depths of



Fig. 1. Global sampling pattern for the target variable and secondary attributes: (a) slope intensity derived from DEM; (b) soil thickness; (c) Automatic Resistivity Profiling (ARP)
measurements.
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investigation (approximately 0–0.5m, 0–1mand 0–1.7m, respectively).
Data were collected continuously along the profiles and georeferenced
using a DGPS positioning system. The average measurement interval
along the profiles was 0.2 m, whereas the spacing between the profiles
was much larger (approximately 6 m). The measured resistivity values
were filtered along each profile using a 1Dmedianmovingwindow filter
to increase the signal/noise ratio. In total, approximately 7500 ARP resis-
tivity values (Fig. 1c) within the prospected area were recorded.

2.3. Geostatistical methodology

2.3.1. Spatial filtering by factorial kriging
In geostatistics, the variogram enables the building of estimations

and simulations by capturing the spatial correlation inherent to a
dataset. Factorial kriging is a variogram-based filtering technique devel-
oped by Matheron (1982). It relies on a simple additive model, where
the spatial variable under study is modeled by a random function,
Z(x), which is separated into terms of independent factors:

Z xð Þ ¼ Z1 xð Þ þ Z2 xð Þ þ :::: ð1Þ

Noise attenuation issues can be easily handled in the framework of
this model, as far as the noise part of a dataset can be considered inde-
pendent of a complementary signal part:

Z xð Þ ¼ ZNOISE xð Þ þ ZSIGNAL xð Þ ð2Þ

In such a way, factorial kriging, by estimating ZSIGNAL(x), allows the
filtering out of the noisy component of a dataset.
Table 1
Summary statistics of the target variable (soil thickness) and the secondary attributes (slope in

Variable Unit Number Mean Va

Soil thickness: calibration set m 519 0.58 0.0
Soil thickness: validation set m 131 0.70 0.1
ARP1⁎⁎⁎ Ω·m 7394 33.51 12
ARP2 Ω·m 7394 24.69 96
ARP3 Ω·m 7394 33.97 25
Slope intensity % 31,998 3.15 2.1

g1⁎: skewness; D⁎⁎: Kolmogorov-Smirnov statistic.
ARP1⁎⁎⁎: Automatic Resistivity Profiling of the first depth of investigation.
The spatial correlation structure of the dataset values can be de-
scribed by a nested variogrammodel, which can be written as

γ hð Þ ¼ ∑
L

l¼0
γl hð Þ ¼ ∑

L

l¼0
blγl hð Þ with bl ≥0 ð3Þ

The variogram is thus modeled as the sum of L+1 basic variograms
(e.g., Goovaerts, 1997), each corresponding to a distinct spatial
structure:where blis the variance of the corresponding basic variogram
model γl(h)andh is a vector (distance) separating any pair ofmeasures.
The variance corresponding to l = 0 is called a nugget and represents
the spatially unstructured part of the total variance. Based on the linear
model of regionalization (3), the random function Z(x) can be
decomposed into a sum of (L + 1) independent random functions,
called spatial components, and its local mean m(x):

Z xð Þ ¼ ∑
L

l¼0
Zl xð Þ þm xð Þ ð4Þ

where Zl(x) is the lth spatial component corresponding to the variogram
model γl(h).

Each spatial component is thus individually mapped by filtering out
the other components. The estimator of the lth spatial component of
variable Z at location x0 is

Z�
i x0ð Þ ¼ ∑

n

α¼1
wα;lZ xαð Þ ð5Þ

with n the number of observations around x0 involved in the estimation
and each observation receiving a weight wα , l.
tensity and ARP measurements).

riance Min Max g1⁎ D⁎⁎ p-Value

8 0.22 1.80 1.46 0.154 b0.0001
5 0.25 2.23 1.48 0.167 0.001
9.64 5.37 138.41 1.26 0.098 b0.0001
.09 2.62 129.51 1.11 0.063 b0.0001
9.81 3.44 119.61 0.77 0.065 b0.0001
3 0.03 6.93 0.31 0.067 b0.0001



Fig. 2. Histograms of the target variable (soil thickness) and the secondary attributes (slope intensity and ARP measurements).
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2.3.2. Accounting for secondary attributes
Let us consider the problem of estimating the value of a continuous

soil variable z at an unsampled location x using data related to this var-
iable, supplemented by values of secondary attributes that are exhaus-
tively sampled. Several studies (e.g., Renard and Nai-Hsien, 1988;
Chilès, 1991; Bourennane and King, 2003) have shown that kriging
with multiple external drifts is more appropriate than cokriging and
necessarily also more appropriate than ordinary kriging in such config-
uration sampling: the target variable is known in few locations, whereas
the secondary attributes are exhaustively sampled over the study area.
In this study, the decomposition described in the previous subsection
(a)
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Fig. 3.Omnidirectional experimental (dots) and the theoretical (curves) variograms of the norm
normal score transform values of slope intensity into two structures: (b) local: small-scale (S1
was performed for the secondary attributes. The next step is to look at
the correlation between the spatial components of secondary attributes
and the target variable. Themain idea consists of replacing the rawmea-
surements of the secondary attributes in the kriging equations by the
values of their spatial components that are themost strongly correlated
with the target variable.

2.3.3. Principal component analysis
Principal component analysis (PCA) of a set of p images generally

aims to summarize and hopefully improve the interpretation of the
available information by using a few new images that are orthogonal
(b) (c)

al score transform values of slope intensity (a); maps of the decomposition of the original
-Slope-G); (c) regional: large-scale (S2-Slope-G).



Table 2
The parameters of the experimental model and the fitted models for the secondary
attributes.

Variable Lag (m) Number of lags Nugget Model Range (m) Sill

Slope-G 12 20 0.05 Spherical 45 0.08
Spherical 192 1.45

PC1-ARP 20 13 0.13 Spherical 34 0.35
Spherical 99 2.07
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linear combinations of the original images, referred to as PCs (e.g., Oliver
et al., 2000; VanMeirvenne and Goovaerts, 2002). For this reason, a PCA
was used in our study to improve and summarize the interpretation of
ARP measurements for the three depths (ARP1, ARP2 and ARP3) that
contain a large proportion of redundant information. Therefore, the
first step consisted of performing a PCA on the resistivity data resulting
from the three depths of investigation. The PCA result was thenmapped
to summarize the resistivity signal for both the horizontal and vertical
dimensions of soil. The second step involved a decomposition of each
image, principal components in our case, into the low-frequency com-
ponent or regional variability, the high-frequency component or local
variability, and noise component (nugget effect).
Distance (m)
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e

(a)

(b)

Fig. 4. Omnidirectional experimental (dots) and the theoretical (curves) variograms of the
component: PC1-ARP (b) into two structures (c) local: small scale (S1-PC1-ARP); (d) regional:
2.3.4. Mapping procedures
The mapping procedures of soil thickness included the ordinary

kriging and kriging with external drift. In the ordinary kriging, the pre-
dictor of z(x0) for an unsampled location x0 is

zOK � x0ð Þ ¼ ∑
n

α¼1
wαz xαð Þ; ð6Þ

wherewα areweights associatedwith the n sampling points. Theweights
sum to unity, a condition that ensures a zero error in expectation.

Kriging with external drift (KED) is a particular formulation of uni-
versal kriging (e.g., Goovaerts, 1997; Wackernagel, 1998). It allows the
use of secondary information to account for the spatial variation of the
local mean of the primary variable. The secondary variables are chosen
for their strong correlation with the variable of interest and should be
available at every location of the primary variable and every estimation
point. KED consists of incorporating supplementary universality condi-
tions about one or several external drift variablesmeasured exhaustive-
ly in the spatial domain into the kriging system. For a thorough
presentation of those methods, the reader should refer to books or pa-
pers on the subject, such as those by Goovaerts (1997), Wackernagel
(1998), Bourennane and King (2003) and Bourennane et al. (2006).
(d)(c)

first principal component (a); maps of the decomposition of the original first principal
large scale (S2-PC1-ARP).



Fig. 6. Soil thickness predicted by kriging using: (a) large-scales of slope intensity and PC1-ARP as external drifts; (b) large-scale of slope as an external drift; (c) large-scale of PC1-ARP as
an external drift; (d) slope intensity and PC1-ARP as external drifts; (e) slope as an external drift; (f) PC1-ARP as an external drift; (g) only punctual measurements of soil thickness.

(a) (b) (c)

N = 519
r = -0.41

N = 519
r = -0.12

N = 519
r = -0.74

N = 519
r = -0.38

N = 519
r = -0.16

N = 519
r = -0.78

(d) (e)

(f) (g) (h) (i) (j)
N = 519
r = -0.37

N = 519
r = -0.31

N = 519
r = -0.29

N = 519
r = -0.34

Fig. 5. Scattergrams between soil thickness (ST) and: PC1-ARP (a) and its decomposition by kriging into two structures (b) S1-PC1-ARP (small-scale); (c) S2-PC1-ARP (large-scale); slope
(d) and its decomposition by kriging into two structures (e) S1-slope (small-scale); (f) S2-slope (large-scale); (g to j) original auxiliary data: ARP and slope intensity data vs ST original
data.
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Table 3
Mean prediction error (ME), root mean square error (RMSE) and relative improvement
(RI) of measured versus predicted ST at each of the validation sites: statistics based on
131 samples.

ME (m) RMSE (m) RI (%)

ST using both S2-slope and S2-PC1 as external drifts −0.03 0.17 0
ST using S2-slope as an external drift −0.07 0.25 −47
ST using S2-PC1 as an external drift 0.03 0.22 −29
ST using both slope and PC1 as external drifts 0.07 0.29 −70
ST using slope as an external drift 0.07 0.30 −76
ST using PC1 as an external drift 0.11 0.34 −100
ST using ordinary kriging −0.05 0.29 −70

216 H. Bourennane et al. / Journal of Applied Geophysics 138 (2017) 210–219
2.4. Validation procedure

The performances of mapping procedures were assessed using sev-
eral criteria. The accuracy of the mapping procedures was assessed by
computing (1) scatter plots of measured versus predicted values at
each validation site, (2) the mean prediction error (ME) and (3) the
root mean square error of prediction (RMSE), which are defined as
follows:

ME ¼ 1
n
∑
n

i¼1
Z xið Þ−Z� xið Þ½ � ð7Þ

RMSE ¼ 1
n
∑
n

i¼1
Z xið Þ−Z� xið Þ½ �2

� �0:5

ð8Þ

The ME criterion was used to check the conditional bias property,
which consists of assuming that prediction errors cancel out, leading
to an unbiased estimator over the entire range of values. The RMSE cri-
terion is a measure of accuracy of the various prediction methods. The
N = 131
r = 0.91

N = 131
r = 0.85

N = 131
r = 0.71

(a) (b)

(d)
N = 131
r = 0.66

(e)

Fig. 7.Measured values of soil thickness versus predicted values by: (a) krigingusing both ARP la
scale of slope as an external drift; (c) kriging using ARP large-scale of PC1 as an external drift; (d)
intensity as an external drift; (f) kriging using PC1 of ARP as an external drift; (g) ordinary kri
RMSE value should be as small as possible for accurate prediction
(e.g., Hyndman and Koehler, 2006). Finally, the relative improvement
(RI) of accuracy was calculated by

RI ¼ RMSER−RMSEEð Þ
RMSER

� 100 ð9Þ

where RMSER and RMSEE are the root mean square errors for the refer-
ence and evaluated methods, respectively. Thus, if RI is positive, the ac-
curacy of the evaluated method is superior to that of the reference and
inferior otherwise (Zhang et al., 1992).

3. Results and discussion

3.1. Descriptive statistics

The descriptive statistics, as well as the values of the Kolmogorov-
Smirnov statistic for normality test, for raw values of both the target
variable and the secondary attributes are summarized in Table 1. Since
the soil thickness (the target variable), as well as the slope intensity
and ARP measurements (the secondary attributes), was found to be
moderately to highly skewed (Fig. 2 and Table 1), normal score trans-
forms were carried out beforehand for all data using the normal score
transform (Goovaerts, 1997; Deutsch and Journal, 1998; Chilès and
Delfiner, 1999):

y xαð Þ ¼ G−1 F̂ z xαð Þð Þ
h i

α ¼ 1; :::;n ð10Þ

where G−1(.) is the inverse Gaussian cumulative distribution function

(cdf) of the random function (RF) Y (x), and F̂ is the sample cumulative
distribution of z.
N = 131
r = 0.83

(c)

(f)
N = 131
r = 0.53

(g)
N = 131
r = 0.69

rge-scale of PC1 and large-scale of slope intensity as external drifts; (b) kriging using large-
kriging using both PC1of ARP and slope intensity as external drifts; (e) kriging using slope

ging from only punctual measurement of soil thickness.
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Indeed, methods based on second-order moments of distributions,
such as PCA, are sensitive to skewed data (e.g., Goovaerts, 1997; Chilès
and Delfiner, 1999). Obviously, back-transformation (normal score
transformed to raw) into the original unit of the target variable is per-
formed finally using

z lð Þ x
0
j

� �
¼ F̂

−1 ðG y lð Þ x
0
j

� �� �h i
j ¼ 1; :::;N ð11Þ

3.2. Kriging analysis of the secondary attributes

3.2.1. Kriging spatial components of slope intensity
To account for the variability of the slope intensity at both short and

long distances, a nested variogram was used to fit the experimental
variogram of the slope. The variability of slope intensity at short dis-
tances is ascribed to two types of linear anthropogenic landforms en-
countered over the study area: lynchets and undulations (Chartin
et al., 2011). Thus, the experimental variogram of the normal score
transform values of slope intensity (Slope-G) was calculated and
modeled (Fig. 3a) with a nested variogram composed of a nugget and
two spherical models. Table 2 summarizes the parameters of the exper-
imentalmodel and thefittedmodels. Thus, based on themodel present-
ed in Fig. 3a, geostatistical filtering has been used to decompose Slope-G
into a long wavelength structure (regional component) corresponding
to the global trend (Fig. 3c: S2-Slope-G) and a short wavelength
structure (local component) corresponding to residual anomalies
(Fig. 3b: S1-Slope-G).

3.2.2. ARP data: principal component analysis and kriging spatial
components

The apparent resistivity, provided by Automatic Resistivity Profiling,
contains a large proportion of redundant information. In addition, the
resistivity values (ARP1, ARP2 and ARP3) are intrinsically correlated. In-
deed, the codispersion coefficients (results not shown), which describe
the correlation between the resistivity valuesmeasured at the three dif-
ferent depths as a function of the spatial scale, are constant. In other
words, the codispersion coefficients are quasi-equal to the correlation
coefficient values. Such a result allows us to conclude that the resistivity
variability with depth is scale independent

Thus, prior to the decomposition of the raw signal into several spa-
tial components, a classical method of multivariate analysis, namely,
principal component analysis (PCA), was performed on the normal
score transform values of resistivity. The first PC (PC1) accounted for
84.58% of the total variance, the second for 12.57%, and the third for
2.85%. In the sequel, we focused on PC1, as it accounts for most of the
total variance measured.

The experimental variogram of PC1 was calculated and modeled
(Fig. 4a) with the basic models that consisted of a nugget component
and two spherical models. The parameters of the experimental model
and the fitted models are summarized in Table 2. Thus, using these
models and the kriging equation system, PC1 was mapped (Fig. 4b) on
a 2 m regular grid over the entire study area. This map summarizes
the relationships among the resistivity values measured at the three
depths of investigation, and it accounts for N84% of the total variance
measured. The positive score values correspond to the larger resistivity
values and the negative values to smaller ones.

Geostatistical filteringwas used to decompose PC1 into a longwave-
length structure (regional component) corresponding to the global
trend (Fig. 4d: S2-PC1-ARP) and a short wavelength structure (local
component) corresponding to residual anomalies (Fig. 4c: S1-PC1-ARP).

3.3. Mapping soil thickness (ST)

The correlations between the original auxiliary data (ARP and slope
intensity data) and soil thickness (ST original data) are weak and
nonlinear (Fig. 5g to j). Conversely, the correlation between the first
principal component resulting from the ARP measurements' PCA
(PC1-ARP) and ST (Fig. 5a) is moderately negative and can be assumed
to be linear. Anyway, in all cases, these linear relationships are statisti-
cally significant. The closeness between PC1-ARP and ST significantly in-
creased when PC1 was filtered to isolate the regional component
(Fig. 5c). It appears also that ST variation is not reflected in the local
component of PC1-ARP (Fig. 5b).

Similar results (Fig. 5d to f) were observedwhen looking at relation-
ships between soil thickness (ST) and the spatial components of the
slope intensity.

Therefore, in the next step and as a first approach to mapping ST,
raw values of the secondary attributes (ARP measurements and slope
intensity) are replaced in the kriging equations when mapping ST
over the entire study area (Fig. 6a) by the values of spatial components
of the secondary attributes (S2-Slope and S2-PC1-ARP) that are the
most strongly correlated with ST.

To examine the need to use two external drifts in predicting the tar-
get variable, two other maps of the ST variable were predicted. The first
(Fig. 6b) was obtained by kriging using S2-Slope as an external drift and
the second (Fig. 6c) using S2-PC1-ARP as an external drift.

Although the better correlations (Fig. 5) between the large-range
components of the secondary variables and the target variable suggest
that using these will improve upon using the raw secondary variables,
it was necessary to demonstrate that improvements in predictions re-
sult from using the large-range components of the secondary variables
rather than the raw secondary variables. Accordingly, ST was also pre-
dicted by kriging (Fig. 6d to f) using the raw secondary variables: PC1-
ARP and slope intensity as external drifts; slope intensity as an external
drift; and PC1-ARP as an external drift.

Finally, ST was also mapped (Fig. 6g) by ordinary kriging on a 2 m
regular grid over the entire study area based on only the 519 punctual
measurements of ST.

3.4. Validation results

Thus, each of the 131 individuals of the validation set was assigned a
value of ST from each predicted map, and then, the criteria listed above
were computed. Table 3 summarizes the different values of these
criteria. The lowest bias (ME values: Table 3) is achieved by kriging
accounting for the large scale components of the two external drifts
(S2-slope and S2-PC1-ARP) and by kriging using S2-PC1-ARP as an ex-
ternal drift.

The RMSE values (Table 3) allow the conclusion that accounting for
the large scale components of two exhaustive secondary data in the
kriging of the ST variable is the most accurate prediction method. The
relative improvement (RI) of the accuracy is at least equal to 29%
(Table 3) between the approach accounting for both large scale compo-
nents of secondary attributes in the spatial estimates of ST and the other
approaches of estimates considered in this study. The results summa-
rized in Fig. 7 and Table 3 indicate that improvements in predictions re-
sult from using the large-range components of the secondary variables
rather than the raw secondary variables themselves. In addition, they
stress the fact that the use of raw exhaustive variables in order to im-
prove spatial estimates of a target variable can lead to inaccurate esti-
mates compared to estimates based only on the measurement of the
target variable (ST by ordinary kriging in this study).

4. Summary and conclusions

The focus of this paper has been on the spatial prediction of a target
variable by capitalizing on the better correlation between the target var-
iable and two exhaustive auxiliary attributes (slope intensity and elec-
trical resistivity measurements: ARP) at specific spatial scales. The
values of ARP and slope intensity were replaced in the kriging equations
by the values of the spatial components that are the most strongly
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correlated with the soil thickness (target variable). For this purpose, the
kriging spatial component technique was applied to separate the nug-
gets and small- and large-scale structures for both ARP and slope inten-
sity. Then, the spatial structures in the ARP and slope intensity data,
which are poorly correlated with soil thickness, were filtered out prior
to integrating both ARP and slope intensity data into the soil thickness
estimation. The filtering of nuggets and small scales of the secondary at-
tributes greatly increases the weak correlations between soil thickness
and auxiliary attributes (ARP measurements and slope intensity). Our
findings also show that improvements in predictions result from using
the large-scale components of the secondary variables rather than the
raw secondary variables. The results also warn against the systematic
use of a raw auxiliary variable to map a sparse target variable. In fact,
the use of a noisy auxiliary variable, exhibiting weak-to-moderate
correlation with the target variable, can lead to worse predictions
compared to a prediction using only the measurements of the target
variable.

In regard to our study, the correlation between electrical resistivity
and soil thicknesswas improved by performing the kriging spatial com-
ponent technique on the principal component achieved using the three
measurement depths of electrical resistivity as variables in a principal
component analysis. The results suggest that the correlation between
soil thickness and the first principal component (PC1), resulting from
a principal component analysis carried out on electrical resistivity mea-
surements of the three prospecting depths, is improved from −0.41 to
−0.74 when the nugget and the small structure of the resistivity data
have been filtered out. A similar enhancement (−0.38 to −0.78) of
the relationship between soil thickness and slope intensity was obtain-
ed when the nugget and small structure of the slope data have been
filtered out. In terms of prediction, kriging with the large scale compo-
nents of two external drifts was compared with ordinary kriging and
kriging with either the large scale of slope or the large scale of the elec-
trical resistivity's PC1 as an external drift to predict the soil thickness. To
demonstrate that improvements in predictions result from using the
large-scale components of the secondary variables rather than the raw
secondary variables, soil thickness was also predicted by kriging using
the raw secondary variables: PC1-ARP and slope intensity as external
drifts; slope intensity as an external drift; and PC1-ARP as an external
drift. The results indicated reasonably low bias of prediction by all of
the approaches. The root mean square error values have shown that
kriging accounting for two large scales of exhaustive variables is the
most accurate.

One of the significant results of our study is that removing nuggets
and small scale variability allows improvement of the correlation be-
tween electrical resistivity and soil thickness on the one hand and be-
tween slope and soil thickness on the other hand. This leads to an
improvement in the spatial interpolation of the target variable. Another
major result consists in the fact that our findings empirically demon-
strate that the use of a raw auxiliary variable to map a sparse target var-
iable can lead to worse predictions compared to a prediction using only
the measurements of the target variable. This study also confirms the
robustness and the generic aspect of noise filtering by kriging analysis
in order to extract target features in redundant exhaustive information
provided currently by various sensors. Furthermore, we can state that
the originality of this work lies in the use of raw data of the apparent re-
sistivity. In fact, strong assumptions underlie the inversion models.
Thus, we have chosen to focus on a geostatistical technique that uses
raw data and filters the spatial structures of the raw data that have
low correlation with the target variable before integrating the filtered
exhaustive data into the estimate of the target variable. However, fur-
ther analysis could be performed in order to compare, in terms of
mapping performances of a target variable, the approach developed in
this study to an approach in which ARP data are inverted beforehand.
In addition, we should keep in mind that by only considering PC1 in
our approach, we admit to neglecting 16% of the variability in ARP
measurements.
Finally, this study suggests thatmultivariate predictions of soil prop-
erties should use the information that is best correlated with the vari-
able of interest. In the presence of nested variogram models, which
indicate the existence of several scales of spatial variation,we should in-
vestigate whether the correlation between the variable of interest and
auxiliary information can be enhanced by filtering some spatial struc-
tures using kriging of spatial components. For example, theweak corre-
lation for a given spatial scale can hide the real correlation between raw
measurements. Filtered auxiliary information can then be incorporated
using krigingwith external drift since it is available at all estimation grid
nodes.
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