
Science of the Total Environment 624 (2018) 480–490

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Improving representation of riparian vegetation shading in a regional
stream temperature model using LiDAR data
Pierre Loicq a,⁎, Florentina Moatar a, Yann Jullian b, Stephen J. Dugdale c, David M. Hannah c

a EA 6293 GéHCO Géo-Hydrosystèmes Continentaux, Université François-Rabelais de Tours, Parc de Grandmont, 37200 Tours, France
b CaSciModOT, UFR Sciences et Techniques, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
c School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Riparian shading was characterised on a
270 km stream using LiDAR data.

• Shading data were injected in a regional
stream temperature model.

• Vegetation's cooling effect ranges from
−3.0 °C (upstream) to −1.3 °C (down-
stream).

• Model accuracy is improved compared to
simpler shade characterisation methods.

• Riparian vegetation data's quality is a key
factor for stream temperaturemodelling.
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Modelling river temperature at the catchment scale is needed to understand how aquatic communitiesmay adapt
to current and projected climate change. In small andmedium rivers, riparian vegetation can greatly reducemax-
imum water temperature by providing shade. It is thus important that river temperature models are able to cor-
rectly characterise the impact of this riparian shading. In this study, we describe the use of a spatially-explicit
method using LiDAR-derived data for computing the riparian shading on direct and diffuse solar radiation. The
resulting data are used in the T-NET one-dimensional stream temperature model to simulate water temperature
from August 2007 to July 2014 for 270 km of the Loir River, an indirect tributary of the Loire River (France). Vali-
dation is achieved with 4 temperature monitoring stations spread along the Loir River. The vegetation
characterised with the LiDAR approach provides a cooling effect on maximum daily temperature (Tmax) ranging
from 3.0 °C (upstream) to 1.3 °C (downstream) in late August 2009. Compared to two other riparian shading rou-
tines that are less computationally-intensive, the use of our LiDAR-based methodology improves the bias of Tmax

simulated by the T-NETmodel by 0.62 °C on average between April and September. However, difference between
the shading routines reaches up to 2 °C (monthly average) at the upstream-most station. Standard deviation of
errors on Tmax is not improved. Computing the impact of riparian vegetation at the hourly timescale using
reach-averaged parameters provides results close to the LiDAR-based approach, as long as it is suppliedwith accu-
rate vegetation cover data. Improving the quality of riparian vegetation data should therefore be a priority to in-
crease the accuracy of stream temperature modelling at the regional scale.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Temperature is a major water quality parameter because it controls
not only oxygen solubility (Moatar et al., 2001) but also chemical and
metabolic reactions (Haag andWestrich, 2002). Hence, it affects fish be-
haviour and survival (Magnuson et al., 1979). River water temperature
modelling is thus important for understanding the distribution of aquatic
species at regional scales, under present or future climatic conditions
(Buisson et al., 2008; Tisseuil et al., 2012; Boisneau et al., 2008; Brown
et al., 2005). River temperature is already increasing across French
water courses, a trend which is expected to continue further under
projected climate change (Moatar and Gailhard, 2006; Bustillo et al.,
2014; Hannah and Garner, 2015). Such a warming could have severe
consequences for a range of aquatic species, and adaptation measures
are currently being soughtwith a view to ensuring the continued surviv-
al of temperature sensitive fluvial organisms. In this context, riparian
shade and groundwater exchanges have been given increasing research
attention, because of their ability to regulate river temperature (Lalot et
al., 2015; Leach and Moore, 2010). Indeed, many studies have shown
that shade can moderate water temperature of relatively small rivers
(Moore et al., 2005; Garner et al., 2014). Conversely, in larger rivers,
Teti (2006) showed (using shade measurements acquired along an in-
creasing-width stream) that riparian vegetation has a limited impact
on rivers larger than 30m. DeWalle (2008) quantified themaximal wet-
ted width for which riparian vegetation can effectively reduce received
solar radiation. However, no study has yet quantified the impact of shad-
ing on temperature on rivers of intermediate width (N15 m and b30 m)
or at the regional scale.

Process-based river temperature models function by simulating the
energy exchange processes heating or cooling a river, in particular
through the input of solar radiation. This solar radiation is composed of
direct (solar rays) and diffuse radiation (scattered by atmosphere),
both ofwhich are influenced in differentways by the presence of riparian
vegetation. The impact of riparian vegetation on the direct radiation can
be quantified by computing a shadow factor (SF), which is the propor-
tion of a river being shaded at a given time. Several methods have been
proposed to compute it at an hourly time step. Chen et al. (1998) detailed
a method to compute riparian shade from GIS polygons of riparian veg-
etation. Their method used stream azimuth and tree height (alongside
solar position) to determine whether a section of stream channel was
in shade. However, this technique only accounted for the effect of vege-
tation located perpendicular to the stream centreline, and furthermore,
did not denote the fraction of the channel cross-section that was shaded.
As a result, Li et al. (2012) developed an enhanced version of the Chen et
al. (1998)methodology, allowing for the determination of the amount of
channel cross-section covered by shade. This new method also enables
the simulation of overhanging vegetation, but like its predecessor, only
considers the effect of vegetation located perpendicular to the river
reach. Approaches capable of simulating the effects of vegetation non-
perpendicular to the reach include that of Cox and Bolte (2007), who
devised amethodology capable of simulating shadow cast by vegetation
located in 8 directions (steps of 45°) around each centreline node, and
the Solar Analyst extension for ArcGIS (Fu and Rich, 1999), which can
compute shadow factor at much finer spatial and temporal scales. In-
deed, Johnson and Wilby (2015) applied this method to a small catch-
ment in order to quantify the potential of planting trees, without using
a physically-based river temperature model.

The impact of riparian vegetation on diffuse radiation can be quanti-
fied by computing a sky view factor (SVF). It is the ratio between the dif-
fuse radiation actually reaching the water and the diffuse radiation that
would reach this surface with no vegetation around. In a lowland area
where topographic shade can be neglected, the tree view factor (TVF)
can be defined as 1-SVF. Unlike SF, these view factors (VF) are constant
in time since they do not depend on the sun's position. For short reaches,
a precise calculation can be achieved through hemispheric photography.
For larger areas, remote sensing products or vegetation polygons are
needed. Most previous studies (Chen et al., 1998; Cox and Bolte, 2007;
Loinaz et al., 2013; Sun et al., 2015) simply use the angle between theho-
rizon and the tree in the directions perpendicular to the river, from one
fixed point of view (usually the centre of the river). Moore et al. (2014)
introduced the computation of width-averaged sky view factors, with
equations considering infinitely long rivers,with orwithout overhanging
trees.

With an approach similar to the one used to compute direct radiation,
the Solar Analyst extension for ArcGIS handles the computation of diffuse
radiation by overlaying a viewshed and a discretised sky map. Two dif-
ferent methods can be used to quantify the amount of radiation coming
from each cell of the open sky (uniform radiation or depending on the
zenith angle). This method was modified and used by Sridhar et al.
(2004) to include the shading effects of near stream vegetation.

In order to quantify the impact of riparian shading, existing regional-
scale stream temperature models usually rely on theoretical values re-
garding vegetation characteristics (Sun et al., 2015; Loinaz et al., 2013),
on simplified assumptions regarding shading process (Haag and Luce,
2008; Cheng and Wiley, 2016), or incorporate shading data from low-
resolution DEMs (Cox and Bolte, 2007). Nowadays however, LiDAR can
provide accurate data at a large scale. In order to develop a tool for ripar-
ian shade inventories using LiDAR data, Guzy et al. (2015) adapted the
insolation module of the Heat Source model (Boyd and Kasper, 2003).
They created polygons of homogenous potential canopy height and ex-
tracted the 75th percentile of the computed frequency distribution of
canopy height provided by LiDAR. Greenberg et al. (2012) used LiDAR
data and the r.sunmodule of GRASS GIS to compute clear-sky solar radi-
ation for three summer days in order to understand the impact of a po-
tential trees removal around a delta, without the use of a network
based temperature model. Finally, Wawrzyniak et al. (2017) used
LiDAR data to compute the impact of riparian forest in a deterministic
water temperature model of a 21 km-long reach, during 5 days in sum-
mer 2010 and 2011. There is thus a range of data sources and methods
available to compute both SF andVF. However, there remains a lack of in-
formation comparing the variousmethodologies, especiallywith regards
to shading routines in regional-scale models. Moreover, the use of LiDAR
as a method for the computation of riparian shading is still in its infancy
and has never been used to compute the impact of riparian vegetation in
a large-scale stream temperature model, during a whole annual cycle.

The goal of this paper is therefore to test the influence of shadow and
sky view factor computed from LiDAR data on the simulation of maxi-
mum daily water temperature (Tmax) with the T-NET model, a dynamic
physically basedmodel for simulating stream temperature at the region-
al scale using the equilibrium temperature concept. We compute SF and
VF based on a LiDAR-derived raster and incorporate these data into the
radiative balance of a T-NET model of the Loir River (France) (see
Beaufort et al., 2016). We then compare the Tmax simulated with LiDAR
data to two othermethods used in the T-NETmodel for computing ripar-
ian shading at the regional scales.Model validation is achieved using data
from 4 temperature monitoring stations that are spread over the Loir
River.

2. Methods

2.1. Principles of the T-NET model

T-NET is a 1D physically-based model designed to compute water
temperature along the longitudinal dimension of a hydrographic net-
work (aGIS polyline). Reaches of this network are limited by two conflu-
ences, or by a source and a confluence (for first order reaches). T-NET
was designed and applied at the regional scale (110 000 km2) by
Beaufort et al. (2016). T-NET runs at an hourly time step and is based
on the equilibrium temperature concept, which is defined as the water
temperature at which the net rate of heat exchange at the interface of
a water body is null (Bustillo et al., 2014). Themodel considers six fluxes
[W·m−2]: net solar radiation, atmospheric longwave radiation,
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longwave radiation emitted from the water surface, evaporative heat
flux, convective heat flux, and groundwater heat inflow. To compute
these terms, the model uses the following parameters as gridded input
data: air temperature [°C], specific humidity [kg·kg−1], wind velocity
[m·s−1], atmospheric longwave radiation [W·m−2] and direct and dif-
fuse solar radiation [W·m−2]. Parameters are allocated to each river
reach as a function of the ratio between the length of the reach within
a grid cell and the total reach length. All meteorological parameters ex-
cept solar radiation are derived from the SAFRAN atmospheric reanalysis
dataset (Vidal et al., 2010). These data are produced by Météo-France
from both observations and modelling at an hourly time step and a spa-
tial resolution of 8 km. Direct and diffuse solar radiation are derived from
the Helioclim3-v5 dataset (Marchand et al., 2017), generated with the
help ofMeteosat satellite imagery at an hourly time step and a resolution
of ~3 × 5 km. Inputs pertaining to river discharge and groundwater con-
tributions to river flow are also required by the model. These are com-
puted at a daily time step with the semi-distributed hydrological
model EROS (Thiéry and Moutzopoulos, 1992). Both parameters are
modelled at the outlets of sub-basins for which river discharge observa-
tions are available for calibration. They are then scaled to the reaches in-
side each sub-basin using the partial area concept. T-NET simulates
longitudinal variability in water temperature between the upstream
and downstream nodes of each reach, with a spatial resolution depend-
ing on the travel time (Fig. 1). Water velocity is given by the ratio be-
tween discharge and channel cross-section, which is computed using
the ESTIMKART empirical model developed by Lamouroux et al.
(2010). At the confluence of two reaches, the output temperature is de-
fined as the sum of the product of the two confluences' temperature and
discharge divided by the sum of the discharge of the two confluences. T-
NET was thus designed to be applied on well mixed streams and not on
standing waters or large estuaries, where 2D (Cole and Wells, 2006;
Becker et al., 2010; Ouellet et al., 2014) or 3D models (Maderich et al.,
2008) are more suitable.

2.2. Net solar radiation calculation

In order to improve T-NET's ability to model the impact of riparian
vegetation on solar radiation, modifications were made to the original
model detailed by Beaufort et al. (2016). Similar to the approach of
LeBlanc et al. (1997), net solar radiation (Hns) is now computed as:

Hns ¼ Rdir 1−αdirð Þ 1−SFð Þ þ SF τð Þ þ Rdiff 1−αdiff
� �

1−TVFð Þ þ TVF τð Þ ð1Þ

where Rdir and Rdiff are the direct and diffuse solar radiation [W·m−2] de-
rived from the Helioclim3-v5 product, αdir and αdiff are the water surface
albedo associated with direct and diffuse radiation respectively, τ is the
transmissivity of riparian vegetation (i.e. the fraction of solar radiation
that passes through the canopy), SF is the shadow factor and TVF is the
tree view factor. αdiff was held at a constant of 0.09, following the
Fig. 1. Principles of the T-NET model.
recommendation of Sellers (1965) and αdir was computed using the for-
mulation of Anderson (1954):

αdir ¼ 1 if Ψb1:24 °

αdir ¼ 1:18�Ψ−0:77 otherwise
ð2Þ

whereΨ is the angle between the horizon and the sun in degrees.
τwas fixed at 50% inwinter and 15% in summer. These values are the

averages of global solar radiation transmissivities given by Cantón et al.
(1994), Sattin et al. (1997) and Konarska et al. (2014) for deciduous
tree species. Transitions between winter and summer values are de-
scribed with an ascending and descending logistic regression whose
equation is:

τ ¼ κ
1þ exp �γ:DoY−βð Þ þ μ ð3Þ

whereDoY is the day of year and κ,β, γ and μ are the parameters fitted by
least squares adjustment to an averaged annual cycle of ground-based
NDVI measured from oak trees during 2008–2012 (Soudani et al.,
2012). These trees are located in the forest of Fontainebleau (60 km to
the south of Paris and ~150 km away from the centre of the Loir catch-
ment). Data from Lebourgeois et al. (2008) indicate that, for oak trees,
there is little phenologic difference between Fontainebleau and the Loir
catchment. However, remote sensing observations from Muller (1995)
show that, in 1987 and in the region of Toulouse (South of France), leaf
emergence of riparian trees occurs about 15 days earlier than for oaks.
In order to take into account this difference between oak and riparian
species, we hence considered an enlarged growing season compared to
oak's phenology (β− 15 days in spring, β + 15 days in autumn). After
fitting the four parameters on NDVI values, κ and μ, representing the
upper and lower values, are adjusted tofit thewinter and summer values
of transmissivity (50 and 15%, respectively).

2.3. Shadow factor and view factor calculations

In order to test the influence of different riparian shading algorithms
onwater temperatures simulatedwith T-NET, we used three approaches
to compute both the shadow factor (SF) and the tree view factor (TVF).

In the first approach (hereafter referred to as the constantmethod),
SF and TVF are held as coefficients that are constant in time but vary as a
function of Strahler order based on the equation:

SF ¼ TVF ¼ vc� k ð4Þ

where vc is vegetation cover (%) computed at the reach scale in a buffer
of 10 m around the river, and k is a coefficient aiming to account for the
influence of the reach width on shadow (where 1 (maximum impact)
denotes a Strahler order of 1 and 0 (no impact) is associated with a
Strahler order of 8). This approach is used in Beaufort et al. (2015, 2016).

In the second approach (hereafter referred to as the variablemethod),
SF and TVF are derived from geometric calculations made at the reach
scale, taking into account river width, tree height, vegetation cover, and
position of the sun (for the shadow factor).

To compute SF at an hourly time step, the model of Li et al. (2012)
was implemented in its simplest version, i.e. considering rectangular
trees, located at the edge of the bank, without overhang:

SF ¼ H � cotΨ� sinδ
W

� vc ð5Þ

where H is tree height,W is river width,Ψ is the solar elevation angle, δ
is the angle between solar azimuth and themean azimuth [0°− 180°] of
each T-NET reach (computed by considering the first and last vertices of
each reach).

To compute VF, we used the secondmodel described in Moore et al.
(2014). It provides SVF for channels of infinite length, without taking

Image of Fig. 1
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into account overhanging trees. For a channel with vertical banks and
fixed tree height, the width- and reach-averaged tree view factor is
computed as:

TVF ¼ 1−0:5
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þW2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þW2

q
−2H

� �� �
� vc ð6Þ

The third approach (subsequently referred to as the lidarmethod) is a
spatially-explicit method that computes SF and TVF from a LiDAR-de-
rived digital surfacemodel (DSM). It requires a) a high-resolution digital
surface model (~1 m) describing the elevation of riparian vegetation, b)
information about the exact location of the river in order to definewater
and non-water pixels and c) polygons of river area, allowing the DSM
pixels to be linked to a given T-NET reach.

To compute SF, we modified the r.sun module (Hofierka and Suri,
2002) of GRASS GIS (GRASS Development Team, 2015) to map per-
pixel shade cast by the DSM. Using this algorithm, a water pixel is de-
fined as being in shade if the elevation of the highest DSM pixel located
along a 50m track in the direction of the sun is greater than the solar el-
evation. Dividing the number of shaded pixels by the number of water
pixels belonging to each river polygon thus provides a shadow factor
for each T-NET reach. Because shading at a given hour vary slowly
throughout the year, the computation was done every hour when the
sun is above the horizon, every 15 days of a standard non-leap year,
for every water pixel. A piecewise cubic interpolation is then applied
to the SF of each hour separately in order to get a value for each day of
the year.

To compute SVF from the DSM, we represented the sky as a hemi-
sphere of radius R centred on a water pixel (as in Essery et al., 2008,
Johnson and Watson, 1984 and Tung et al., 2006; Fig. 2). We used the
r.horizon module of GRASS GIS to calculate the angle θ between the ho-
rizon and the highest DSM pixel as seen from each water pixel at hori-
zontal azimuth steps φ of 10°. The whole hemisphere is thus made of
n= 36 segments. The diffuse radiation emission is considered to be iso-
tropic and the river surface to be horizontal. The SVF for each segment is
computed from the sphere area formula:

R2 R π
2
θ

Rφ
0 cosθ sinθdφdθ

R2 R π
2
0

Rφ
0 cosθ sinθdφdθ

¼ 1þ cos2θ
2

ð7Þ
Fig. 2. Calculation of a sky view factor frommeasures of θ, the angle between the horizon
and the highest vegetation seen from a water pixel and with an angular step φ of 10°. R is
the radius of the hemisphere.
It therefore follows that the SVF for the whole hemisphere is given
by:

SVF ¼ 1
2
þ 1
n

Xn
i¼1

cos2θi ð8Þ

An averaged TVF value (TVF = 1-SVF) is subsequently attributed to
each T-NET reach as themean TVF value for all DSMpixels locatedwithin
the reach.

2.4. Study site and water temperature observations

The Loir River basin is an 8283 km2 sub-catchment of theMaine River
watershed located in central France (Fig. 3). The river network of the Loir
basin is 4420 km long, ofwhich the Loir River itself is 316 km. The basin is
generally low-lying, with altitudes ranging from 20 to 140 m above sea
level. As highlighted by the river network's variable drainage density
(Fig. 3), a calcareous aquifer with high permeability is present in the
north-east of the catchment. It feeds the river network with groundwa-
ter exchanges in its upstream sections (Baratelli et al., 2016). Channel
slope (computed from a 25m resolution digital terrain model of the wa-
tershed) ranges from 0.01% to 5%, with amedian value of 0.5%. Themain
tributaries of the Loir are the Conie, the Yerre and the Aigre, with catch-
ments areas of 530, 300 and 280 km2 respectively. Themean discharge of
the Loir at its downstream-most gauging station (1961–2015) is
31.8 m3·s−1 (specific discharge = 4.0 l·s−1·km−2). The flows of the
Aigre (specific discharge= 5.4 l·s−1·km−2) and the Conie (specific dis-
charge = 3.4 l·s−1·km−2) show little variation during the year, com-
pared to the Loir. However, interannual fluctuations are much greater,
driven by piezometric fluctuations of the Beauce aquifer.

Eighteen temperature loggers allowing for the model validation are
located in the catchment. They acquired data at an hourly time stepwith
varying periods of availability (extending from summer 2008 to sum-
mer 2014). The loggers were generally placed at a depth N1 m (accord-
ing to the mean interannual water level), and steps were taken to
ensure than theywere installedwithinwell-mixed sections of the chan-
nel to avoid potential stratification biases. Four of these stations are lo-
cated within themain stem of the Loir (S1 to S4), where LiDAR data are
available. The period of measurement is different for each station and is
given in Fig. 4. The annual cycle of mean daily temperature of the Loir
River ranges from 2 to 24 °C at station 1 (between 08/2010 and 07/
2011), while the annual amplitude of the Aigre and the Yerre are small-
er because of the groundwater fluxes (5–21 °C and 4–16 °C on the same
period, respectively). Temperature regime of the Conie River is strongly
dependent on the groundwater level. Its variability can be similar to the
Loir River (2009, 2010) or very limited (annual range of 8–14 °C in
2014).

2.5. T-NET model implementation and criteria of model performance

The Loir River basinwas implemented in the T-NETmodel. It consists
of 2206 reaches, of which the Loir River itself is covered by 161 reaches.
Simulated discharge and groundwater inputs used to drive T-NET (de-
rived from the EROS hydrological model) were found to agree reason-
ably well with observed data. Nash-Sutcliffe (Nash and Sutcliffe, 1970)
model efficiency coefficient (NSE) calculated against hydrometric obser-
vations ranged from 0.59 to 0.95 (1974–2012 period) for 21 of the 23
sub-basins of the Loir catchment. The remaining two sub-basins
(b0.10 m3·s−1; located in the upper portions of the watershed) yielded
negative NSE values.

In order to compare the three shading methods detailed in Section
2.3, we ran the T-NET model three times on seven hydrologic years
(from August 2007 to July 2014).

For the constant method, vegetation cover (vc) was derived from a
dataset available at the national scale (Valette et al., 2012), which is

Image of Fig. 2


Fig. 3.Map of the Loir catchment, with stream temperature monitoring stations, gauging stations, watersheds used for discharge modelling, LiDAR area, geologic formations, Helioclim grid.
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based on river and vegetation polygons from the BD TOPO® database,
provided by Institut national de l'information géographique et forestière
(IGN).

For the variable method, vcwas also derived from this dataset. Tree
height H was fixed at 15 m and river width W was estimated using the
ESTIMKART empirical model (Lamouroux et al., 2010).

For the lidarmethod, the digital surfacemodel (DSM) required for the
shading computation was derived from a LiDAR survey conducted by
IGN on approximately 270 km of the Loir River (85% of the total river
length) on 26 May 2012. That day, average discharge was 25.5 m3·s−1

at the downstream-most gauging station (interannual average is
31.8 m3·s−1). The DSM was generated by gridding the LiDAR first
returns at a resolution of 1 m2. LiDAR accuracy was assessed as ~60 cm
in the horizontal and ~20 cm in the vertical components. Because
water does not reflect the LiDAR pulses, no data was available for the
water pixels (unless emergent aquatic vegetation was present), and we
used this property to discriminate water vs. non-water pixels inside
the river polygons of the BD TOPO database. Elevations for these water
pixels as well as for other sporadic data gapswere computed by attribut-
ing values from a digital elevation model (DEM) to the no data pixels.
This 1-m resolution DEM, built from LiDAR final returns, provides values
above water by interpolation of altitudes between the river banks. Final-
ly, polygons from BD TOPO were also used to attribute DSM pixels to
each reach of the T-NET network. Because LiDAR data were not available
on the tributaries and the headwaters of the Loir, the constant method
was applied on these reaches. With this configuration, the lidar method
takes b5 h to run on a computerwith 16 CPUs and 64 Gb of RAM. Finally,
in order to compare the lidarmethod with a situation without riparian
vegetation, a supplementary simulation was done with SF and TVF
fixed at zero everywhere.

In order to characterise differences in vegetation cover between the
DSM and that derived from the BD TOPO database (Valette et al.,
2012), a DEM was also used to create a raster of vegetation height by
subtracting the DEM (ground) elevations from the DSM. A vegetation
Fig. 4. Period of availability of stream temperature observati
cover map was then extracted from the vegetation height raster, where
vegetation cover was defined as all pixels with vegetation higher than
1 m. A LiDAR-derived river width was also extracted for analysis pur-
poses by dividing the area of water pixel inside each polygon by the
length of the T-NET reaches.

Threemodel performance metrics were used to quantify the accuracy
of the different methods regarding the maximum daily temperature. The
root-mean-square error (RMSE)wasused as a global performancemetric:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Tsim−Tobsð Þ2
N

s
ð9Þ

whereN is the number of observations, Tsim is the simulated river temper-
ature and Tobs is the observed river temperature. Bias (defined as the
mean difference between simulated and measured temperatures) was
used to quantify the mean over/underestimation of the model. Finally,
the standard deviation of errors (SDE) quantifies the variability of daily
biases in a given period. Because the temperature time series used for
model validation were not concomitant (Fig. 4), model performance
was analysed using twomethods. First, we comparedmodel performance
against all available validation data. This allows for comparison between
the three shading methods detailed in Section 2.3. Second, in order to
compare spatial variability in the model's performance between the 4
temperature logger stations, we used temperature data from the period
during which concurrent measures were available at all 4 stations (13th
to the 31st August 2009).

3. Results

3.1. Characterisation of riparian vegetation cover

Analysis of vegetation cover extracted from the LiDAR data inside a
single buffer of 10 m around the 270 km of river shows that 58% of the
ons at the four logger stations located on the Loir River.

Image of Fig. 3
Image of Fig. 4
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riparian zone is vegetated. The median vegetation height in this area is
10.0 m and the third quartile of the height (considered by Guzy et al.,
2015) is 14.9 m, while the standard deviation is 6.5 m. Longitudinal pro-
files of vegetation cover, median and 3rd quartile of height are given in
Fig. 5. There is a slight but significant decreasing downstream trend for
these three variables (p-value = 0.014). In comparison with the
LiDAR-derived vegetation cover, vegetation cover derived from the BD
TOPO database is overestimated everywhere with the exception of
some small reaches (Fig. 5). Themedian overestimation is 35% upstream
of river km 160 and 22% downstream. This overestimation rises to N39%
for 20% of the reaches.

3.2. Variation in riparian shading computed with the three methods

In the Loir catchment, direct and diffuse radiation comprise ~70% and
~30% respectively of the incoming solar radiation received at the river
surface between 8 and 16 h (period 2007–2014). This means that shad-
ow factor has a greater impact on water temperature than view factor.

Fig. 6 shows the longitudinal profile of SF on the Loir River for the
three methods at midday on the summer solstice, when solar radiation
is strongest. For the constant method, the reaches covered by LiDAR
data have a uniform Strahler order of 5, so that the weighting coefficient
k in this area is always equal to 0.4 (see Section 2.3). The variation of SF is
thus only dependent on the vegetation cover. The variablemethod varies
strongly as a function of reach azimuth, even though the sun is at its
highest elevation, while the lidar method shows smaller variations. The
lidarmethod is thus less sensitive to reach azimuth, compared to the var-
iable method.

At noon, the Loir's SF computedwith the lidarmethod lies between 0
and 0.3 in June (median=0.1; Fig. 7a solid lines) and between 0.1 and 1
in December (median = 0.5). There is thus more variability in winter
than in summer, because reach azimuth has a much greater impact
when the sun is low in the sky. Seasonal variability in SF exhibits strong
annual cyclicity, with SF minima centred on the summer solstice for
every reach. Highest SF values are found on a reach located 85 km
from the source, flowing East-West and bordered by persistent riparian
forest cover (N20 m tall). Lowest SF values are found on a North-South
oriented reach located 271 km from the source, explaining theweak an-
nual cycle at noon (Fig. 7a, pink solid line). Fig. 7b shows the daily cycles
at the summer solstice. The hour of minimum SF in a day is not always
centred on noon because it depends on the reach orientation. SF obtain-
ed from the variablemethod is usually higher than that provided by the
lidar method, except in winter and at noon for North-South oriented
reaches (Fig. 7a, dashed pink line). At the summer solstice, between 6
Fig. 5. Characterisation of riparian vegetation for each T-NET reach (a) comparison of vegetation
of 10 m on both sides of the river polygons) (b) median and 3rd quartile vegetation heights fr
and 18 h, the variable method yields higher SF than the lidar method
74% of the time, especially in the upstream parts of the watershed. In-
deed, the variable method yields 184 occurrences of SF values equal to
1, while it only occurs 3 times with the lidar method.

Fig. 8 shows the longitudinal profile of TVF for the three methods.
Mean values are 0.34, 0.38 and 0.26 for the constant, variable and lidar
methods respectively. TVF computed with the lidar method comprises
values between 0.47 and 0.11. Like for the SF, there is a significant (p
b 0.01) decreasing trend due to both the increasing width of the river
and thedecreasing vegetation cover. The variablemethod overestimates
TVF, especially for the upstream portion of the river. Indeed, the inter-
method variability in computed TVF values decreases as the influence
of vegetation on TVF reduces with increasing river width.

3.3. Impact of riparian shading method on annual and seasonal river tem-
perature simulations

Results of this paper focus on the 4 temperature monitoring stations
located on the Loir River,where LiDARdata are available. For the 14 other
temperature monitoring stations located on the tributaries, the constant
method provides a median annual RMSE on mean daily temperature at
1.69 °C (min=1.35 °C,max=2.89 °C). Seasonality in the accuracy is ob-
served since median bias on mean daily temperature is −0.4 °C when
computed for the full year but rises to 0.2 °C in summer. 67% of daily
biases are comprised between ±2 °C.

Biases, SDE and RMSE averaged on the four stations are shown in
Table 1 for the April–September and the October–March periods. In the
April–September period, the lidar method improves the mean bias by
0.62 °C in comparison with the constantmethod. The mean RMSE is im-
proved by 0.22 °C although the mean SDE is increased by 0.10 °C. The
three metrics show that the constant method provides better results
than the variable method. During the October–March period, biases of
the 3 methods are closer to zero. All criteria of the constant and the
lidarmethods are very similar because solar radiation is lower and vege-
tation transmissivity is high. However, the variablemethod is consistent-
ly colder than the other methods by ~0.3 °C.

Fig. 9 shows the monthly biases (Tsim-Tobs) of maximum daily tem-
perature (Tmax) computed on available measured data (see Fig. 4). At
the four stations, the lidarmethod provides improved biases in compar-
ison to both the variable and the constantmethod from April to Septem-
ber. Compared to the variable method, the maximum improvement
occurs during the spring and autumn months (2 °C at S1; 1.5 °C at S2;
0.5 °C at S3; 0.7 °C at S4). Despite this improvement, the lidar method
still underestimates river temperature by N1 °C during at least 2months
cover derived from the BD TOPO database (Valette et al., 2012) and LiDARdatasets (buffer
om LiDAR data.

Image of Fig. 5


Fig. 6. Longitudinal profile of shadow factor provided by the 3 methods on the Loir River at the summer solstice (21st June) at 12 h UTC.
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in summer at S1, S2 and S4. The constantmethod provides a consistently
colder Tmax than the variable (and lidar) methods at stations 3 and 4
from May to August, presumably because this method does not model
the seasonal cycle of increasing and decreasing shadow length.

Averaged annual cycles of SDE show little difference between
methods and always stay above 1 °C (Fig. 9). That means that simulated
Tmax is substantially more variable than observed data, whatever the
method used.

3.4. Impact of riparian shading method on summer maximum daily tem-
perature long profile

We analysed longitudinal profiles in summer by considering average
maximum temperature between the 13th and the 31st August 2009.
During this period, discharges were low (b7 m3·s−1 at the down-
stream-most gauging station) and the averagedmaximumdaily air tem-
perature in the catchment was relatively high (25.9 °C). The longitudinal
profiles (Fig. 10) exhibit discontinuities in the thermal signal that are
driven by cool water inflows from the Conie and Aigre rivers, which
drain the Beauce aquifer (Baratelli et al., 2016). Before entering the
LiDAR-covered area (shown with a dashed vertical line), the variable
method is colder than the constantmethod by N2.5 °C. This difference de-
creases slowly in a streamwise direction until it reverses and the variable
method becomes warmer than the constant. Indeed, the three methods
provide a persistentwarming trend as a function of distance from source,
but this trend is higher for the variable method (1.87 °C/100 km com-
pared to 1.23 °C/100 km and 1.25 °C/100 km for the constant and lidar
methods respectively). This difference in longitudinal trend persists
across all summers in the 2007–2014 simulation period. On average be-
tween the 13th and31st August 2009, the lidarmethods providewarmer
Tmax than the two other methods all along the Loir, with biases close to
zero at stations 3 and 4. However, Tmax is still underestimated by 1.6
and 1.3 °C at stations 1 and 2. RMSE values are 1.99, 2.08, 1.43 and 1.79
°C on S1 to S4 respectively. Fig. 10 also shows the simulation considering
the absence of riparian vegetation. The difference between this output
and the lidar method reaches up to 3.0 °C just upstream of the Conie
Fig. 7. Percentiles of the SF distribution obtainedwith the threemethods on the 135 T-NET reac
the references to color in this figure, the reader is referred to the web version of this article.)
confluence, where sensitivity analysis shows that the lidarmethod sim-
ulation is no longer under the influence of the constant method applied
upstream of the LiDAR area. This difference reaches a minimal value of
1.3 °C at the downstream-most point.

4. Discussion

4.1. Discrepancies in computed SF and TVF

The global overestimation of SF and TVF provided by the variable
method compared to the lidarmethod can be explained by four key fac-
tors. First, the BD TOPO database that weights the results of the variable
method clearly overestimates vegetation cover in relation to the LiDAR-
derived values (discussed in Section 3.1). Second, comparison of thewet-
ted widths used in the variablemethod with LiDAR-derived river widths
shows that the former are underestimated, especially upstream of
~150 km and downstream of ~250 km from the source. These width un-
certainties drive an increase in SF (TVF) of 6% (4%) when averaged over
the entiremodelling period and 14% (9%) between 13th and 31st August
2009. Third, discrepancies may also arise from the fact that the variable
method uses averaged stream azimuths while the lidarmethod intrinsi-
cally considers the position of vegetation in regard to the water surface.
Indeed, reach azimuth impacts the timing of minimum SF (Li et al.,
2012), the hourly amount of direct solar radiation and hence the maxi-
mum daily temperature (Garner et al., 2017). In order to quantify these
discrepancies, we cut the Loir river GIS line in 50 m parts and compared
azimuths of these small reaches with the original T-NET reaches
azimuths. The mean absolute difference is 26° and R2 is 0.66. Finally,
the characterisation of vegetation cover and height at high resolution
with the LiDAR data may not be reproducible in the variablemethod by
taking an average of these data at the reach scale. Indeed, Greenberg et
al. (2012) report that 28% of the change in insolation caused by removal
of riparian vegetation characterised with LiDAR data could not be ex-
plained by considering averages at the reach scale. In our case, amultiple
linear regression between LiDAR-derived TVF and LiDAR-derived tree
height, vegetation cover and river width averaged at the reach scale
hes (a) Annual cycles at noon (b) daily cycles at the summer solstice. (For interpretation of
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Fig. 8. Longitudinal profile of tree view factor provided by the 3 methods on the Loir River. Values from the variable method are averaged on 08/2007-07/2014.
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provides R2 = 0.83. Hence, 17% of the TVF variance cannot be explained
by these three variables when averaged at the reach scale.

4.2. Influence of shading routine on simulated river temperatures

In order to separate the influence of the variable method itself from
the influence of the vegetation cover data used to drive it, we injected
the vegetation cover computed from the LiDAR data (10 m buffers on
each river bank for each reach) into the variable method. As a first step,
tree height was kept at 15 m. The resulting longitudinal profile (13 to
31 August 2009 average) shows that, in this configuration, the variable
method closely approximates the lidar method (Fig. 11). The mean bias
(computed against observed temperatures) between April and Septem-
ber is−1.19 °C, compared to−0.94 °C for the lidarmethod and to−1.86
°C for the variablemethodwith the original vegetation cover. Themedian
vegetation height computed from the LiDAR dataset was subsequently
also injected into the variable method. In this case, mean bias is further
reduced to−0.78 °C. Using the same approachwith the constantmethod
provides a profile that is warmer than the lidar method profile prior to
river km 100 and colder after river km 200. Hence, a coefficient k =
0.4 seems to be appropriate for a river width of 25–30 m, during the
month of August.

4.3. Performance of T-NET model on the Loir River

Although the T-NET model of the Loir River (driven with the lidar
method) provides relatively unbiased temperature at station 3, it still un-
derestimates temperature at stations 1 and 2 and to a lesser extent at sta-
tion 4 (Fig. 9). Sensitivity analyses show that uncertainty about the
impact of vegetation on tributaries (because of the application of the con-
stant method in areas where LiDAR data do not exist) cannot fully ex-
plain the underestimation of modelled temperatures on the Loir.
Underestimation at station 1 is partly due to the underestimation of
the Conie tributary. An impoundment located at the source of the river
likely explains why the Conie is warmer than expected (Pedersen and
Sand-Jensen, 2007; Dripps andGranger, 2013). Impoundments on sever-
al other tributaries may have the same effect and contribute to warming
the Loir River and hence explain the negative biases at station 2. Station 4
is located just upstream of a small weir. There are N120 small weirs
(height b 3 m) on the Loir River that may partially explain the tempera-
ture underestimation. Indeed, by increasing water depth, they increase
travel time and thus sensitivity to air temperature. By decreasing water
velocity, they can favour thermal stratification in summer (Torgersen
et al., 2001) and since water is usually released by weir-overflow,
Table 1
Model performance criteria for maximum daily temperature, averaged for the 4 stations
located on the Loir River from April to September and from October to March (°C).

April to September October to March

Bias SDE RMSE Bias SDE RMSE

Constant method −1.44 1.61 2.17 −0.31 2.04 2.07
Variable method (h = 15 m) −1.86 1.65 2.55 −0.60 2.09 2.18
Lidar method −0.82 1.75 1.95 −0.33 2.05 2.08
warmer water may be selectively released. This process is not taken
into account in T-NET because it only considers the longitudinal dimen-
sion. Other more complex hydrodynamic models (e.g. Becker et al.,
2010; Cole and Wells, 2006; Maderich et al., 2008; Deltares, 2014)
would therefore be required to incorporate this process. The high tempo-
ral variability in modelled temperatures (compared to observed data) is
likely due to modelled flow velocities that exceed real values. Unfortu-
nately however, we have no observed values of travel time to compare
with. Finally, it must be kept in mind that 1) computed model perfor-
mances are dependent on the number of validation stations, which is
limited to 4 in the current study and 2) that the T-NET model is driven
with re-analysis data which are themselves subject to errors. In particu-
lar, the number of meteorological stations providing air temperature as
input of the SAFRAN reanalysis in the Loir catchment is limited: approx-
imately 10 stations are located upstreamof S1 but only 2 stations located
close to each other cover the rest of the basin (Quintana-Seguí et al.,
2008). The density of stations is still lower for wind velocity and relative
humidity but is higher for precipitations.

4.4. Implications, shading methods limitations and perspectives

Our results show that the lidarmethod has good potential for compu-
tation of SF and SVF at hourly timesteps onmedium to large rivers and at
large temporal and spatial scales. For small rivers (width b 10m), whose
precise location can be hard to determine using remote sensing due to
obscuration by the tree canopy, the variable method may be more suit-
able, as long as it is fed with accurate vegetation cover data. Indeed,
our results show that differences of modelled Tmax can be large if the
methods are used with inaccurate vegetation cover data. The quality of
these input data is therefore highly important for improving stream tem-
peraturemodelling. LiDAR covers of riparian zones are increasingly avail-
able, in particular because of their use for flood risk assessments.
Furthermore, vegetation heights can also be obtained at the catchment
scale by photogrammetric techniques (e.g. Michez et al., 2017), while
satellite and airborne high resolution imagery can provide accurate loca-
tion of riparian vegetation (Tormos et al., 2014). These new techniques
could potentially be valuable for improving future river temperature
modelling efforts.

Our results show that in late August 2009, the Loir's vegetation de-
creases Tmax up to 3 °C in the upstream part of the river and by 1.3 °C
at the downstream-most reaches. This difference is caused by the in-
creasing wetted width (from ~25 to ~50 m) but also by decreasing veg-
etation cover in the streamwise direction. These quantifications of the
thermal impact of riparian vegetation are likely minimum values for
two reasons. First, the impact of overhanging trees was neglected (as
in all methods used in this paper) (Li et al., 2012; DeWalle, 2008). Sec-
ondly, the summer transmissivity value comes from publications study-
ing single trees' transmissivity. However, because riparian buffers are
often composed of several rows of trees, real world transmissivity values
are likely to be lower, resulting in slightly cooler water temperatures
(Duursma and Mäkelä, 2007; Dugdale et al., 2018). Beside this, further
research is needed to validate the accuracy of shadows obtained with
the lidar method against aerial imagery. As an example, Greenberg et
al. (2012) reported an overall accuracy of 92%. Since their LiDAR data
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Fig. 9. Monthly biases (Tsim-Tobs) and standard deviation of errors of maximum daily temperature provided by the 3 methods at the 4 stations (averaged annual cycles computed on
available observed data).
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and ours were both acquired when trees were in leaf, a similar accuracy
may be expected.

A wide range of values is reported in the literature regarding the
cooling effect of vegetation (Moore et al., 2005), mainly for streams
narrower than 10 m, for which the response of Tmax to clear-cutting
can range from 2 to 8 °C (Gomi et al., 2006). For streams wider than
10 m, a modelling approach is usually used to quantify the impacts of
vegetation on stream temperature. Our results are in agreement with
Woltemade and Hawkins (2016), whomodelled a cooling effect of veg-
etation of approximately 2 °C for a 14 m wide North-West/South-East
oriented stream flowing in a mountainous catchment of California
(low-flow conditions). A topographic shade of 17% was considered in
the deforested scenario; their resultwould thus be higher in an environ-
ment without mountains, like the Loir catchment. Using LiDAR data,
Wawrzyniak et al. (2017) modelled a cooling impact of 0.4 °C on Tmax

on a 22km-long groundwater-fed river reachwith awettedwidth rang-
ing from 50 to 120 m. The overall NNE-SSW orientation of this river is
likely to decrease the impact of riparian vegetation, in comparison
with the Loir, which is globally east-west orientated. Other studies
show that the impact of vegetation decreases steadily as wetted width
increases to about 30 m (Teti, 2006), 10 m (Davies-Colley and Quinn,
1998) and 17 to 43 m for East-West to North-South oriented streams
Fig. 10. Longitudinal profile of maximum daily temperature (averaged between the 13 and th
vertical dashed line depicts the start of LiDAR cover. Conie, Yerre and Aigre are the main tribut
(DeWalle, 2008). Our results suggest that the cooling effect can remain
above 1 °C even for widths larger than 40 m.

Potential improvements to our lidar method include the incorpora-
tion of wetted widths related to the discharge. Although this is possible
at small spatial and temporal scales by using a hydraulic model
(Wawrzyniak et al., 2017), modelling wetted widths at regional scales
can be very complex, especially without field measures of hydraulic ge-
ometry. Channel morphology from bathymetric LiDAR data may be one
potential solution to this issue (e.g. Hilldale and Raff, 2008; Bailly et al.,
2010). Another potential improvement to our methodology relates to
the use of Beer's law to model the extinction of solar rays through the
tree canopy, as demonstrated by several investigations using coarse veg-
etation data (Sun et al., 2015; Tung et al., 2007; Sridhar et al., 2004; Lee et
al., 2012). Transmission of light beneath the canopy of overhanging trees
could also be modelled, but requires information or hypotheses regard-
ing the shape of trees. When aerial imagery is available, more complex
methods considering position of individual trees may be used in order
to model the transmission of light beneath the canopy (Essery et al.,
2008).

Finally, this paper focuses on the impact of vegetation on solar radia-
tion and hence on maximum daily temperature (Johnson, 2004; Garner
et al., 2017). Although the impact of vegetation on longwave radiation
e 31 August 2009) provided by the 3 methods and by a vegetation-free simulation. The
aries.

Image of Fig. 9
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Fig. 11. Longitudinal profile of maximumdaily temperature (averaged between the 13 and the 31 August 2009) provided by injecting the variablemethod with vegetation cover (vc) and
median height from LiDAR data. The vertical dashed line depicts the start of LiDAR cover. Conie, Yerre and Aigre are the main tributaries.

489P. Loicq et al. / Science of the Total Environment 624 (2018) 480–490
is limited on sunny days (Leach andMoore, 2010; DeWalle, 2008), view
factors computed in this paper could be used to quantify the impact of
vegetation on longwave fluxes at both regional scales and during a com-
plete annual cycle. LiDAR data could also be used to model the impact of
vegetation on water temperature resulting from decreased air tempera-
ture andwind velocity engendered by the riparian canopy. Indeed, forest
canopies can reduce daytime air temperature by 3 °C to N6 °C and wind
velocity by 10–20% in comparison with open areas (Moore et al., 2005).

5. Conclusion

Themain goal of this studywas to understand the influence of using
a LiDAR-derived digital surfacemodel to quantify the impact of riparian
vegetation on 270 kmof the Loir River.We demonstrated that the use of
LiDARdata improves themeanbiases of simulatedmaximumdaily tem-
peratures (Tmax) in summer, compared to two other simpler methods
for computing the effects of riparian shading at large scales. However,
it did not improve the standard deviation of errors on Tmax, which is like-
ly more influenced by the presence of weirs and impoundments.

The monthly-averaged difference in Tmax computed by the various
shading methods can reach up to 2 °C at the upstream-most station
and 1 °C at the downstream-most station. However, this difference is
mainly due to the overestimation of vegetation cover in the dataset
used to compute shadow and view factors in the non-lidarmethods. In-
deed, injection of vegetation cover extracted from the LiDAR data into
the shadingmethod of medium complexity (variable method) decreased
the largest difference at the upstream-most station to 0.8 °C, suggesting
that this method is sufficient for the computation of SF and VF provided
that it is suppliedwith accurate (high-resolution) data pertaining to veg-
etation cover. Improving the quality of riparian vegetation data should
therefore be a priority for improving stream temperature modelling at
the regional scale. The simplest method (constant method) may be ap-
propriate to model mean daily temperature for a given period of the
year, as long as vegetation cover is weighted with a coefficient depend-
ing on the river width.

We hope that the application and comparison of methods demon-
strated in this paper will improve understanding of the strengths and
limitations of other existing stream temperature models. Enhancing
the ability of models to simulate the impact of riparian vegetation is of
key importance for the development of climate change adaptationmea-
sures and understanding the fundamental processes responsible for
spatio-temporal variability of river temperature.
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