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The inverse problem of groundwater models is often ill-posed and model parameters are likely to be
poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation.
However, some models, including detailed solute transport models, are further limited by prohibitive
computation times. This often precludes the use of concentration data for parameter estimation, even
if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration
data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but
are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink
(well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used
to simulate advective transport. A comparison between the particle tracking surrogate model and an
advective–dispersive model shows that dispersion can often be neglected when the mixing ratio is com-
puted for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was
implemented to solve the inverse problem for a real SW-GW transport problem with heads and concen-
trations combined in a weighted hybrid objective function. The resulting inversion showed markedly
reduced uncertainty in the transmissivity field compared to calibration on head data alone.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Parameters involved in groundwater models are generally
obtained by history-matching against hydraulic head data. How-
ever, this approach generally leads to ill-posed inverse problems
(Anderman and Hill, 1997; Carrera et al., 2005). This is particularly
the case for groundwater-surface water (GW-SW) models, where
independent estimates of surface water in/outflow are most
important for constraining surface water exchanges (Fleckenstein
et al., 2010; Hunt et al., 2006; Sophocleous, 2002). The use of addi-
tional, diverse field observations can alleviate the ill-posedness
(Zhou et al., 2014). However, successful examples of including
solute concentration for parameter estimation are scarce
(Christiansen et al., 1995; Hunt et al., 2006; Medina and Carrera,
1996; Pool et al., 2015).
The computational burden of simulating advection and disper-
sion at the field scale is a primary barrier to the use of concentra-
tion data for GW-SW interaction investigations. Depending on the
problem, a single simulation of advective–dispersive transport
over periods of years to decades may require hours, even on mod-
ern computers (Hill and Tiedeman, 2006; Konikow, 2011). Several
thousands of model runs are generally necessary to complete
parameter estimation and uncertainty analysis (Anderson et al.,
2015). This suggests that alternative approaches to simulate solute
transport that reduce the computation effort could have significant
advantages for modeling and understanding GW-SW processes.

Transport models fall into two general categories. In all cases,
solution of the flow equation provides heads, water fluxes and flow
directions. But, as discussed by Konikow (2011), transport model-
ing approaches are then based on either: i) modeling transport as
advection dominated; or ii) solving the full advective–dispersive
transport problem. Theoretically, measured concentrations can
only be used to constrain the more complex models, which con-
sider dispersion (Konikow, 2011). Only few cases that included
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concentration data for parameter estimation were based on
advective-dispersion models (Christiansen et al., 1995; Fienen
et al., 2009; Tonkin and Doherty, 2009).

All modeling efforts require trade-offs (Hill et al., 2016). One
common example is that aquifer parameters may be considered
to be homogeneous to allow for examination of other processes,
such as GW-SW exchange. Thus, few studies have attempted to
infer heterogeneous conductivity fields based on concentration
data (Carniato et al., 2015). The goal of this study is to examine
alternative modeling strategies to support such investigations.

Over thepastdecade, surrogatemodelinghasbeenused to reduce
the computational requirements of somehydrogeological problems.
Surrogatemodels are lower-fidelitymodels that adequately capture
the most important features of the original complex model while
reducing the computational cost (Razavi et al., 2012). Surrogates
are used most often during parameter estimation or uncertainty
analysis, which require numerousmodel runs. However, a candidate
surrogatemodel shouldmeet certain criteria (Burrows and Doherty,
2015): i) the surrogate model must compute the key outputs made
by the complex model; ii) the output values of the surrogate model
should be reasonably consistent with those of the original complex
model; and iii) parameters used by both models must play similar
roles. Our specific objective was to test whether particle tracking
could act as a suitable surrogate for more computationally demand-
ing advective–dispersive models, thereby allowing for the use of
concentration data to constrain heterogeneous conductivity fields.

Particle-tracking techniques have been compared to advective–
dispersive transport models such as MT3DMS. For example,
Gusyev et al. (2014) found very similar simulated tritium concen-
trations based on particle-tracking (MODPATH – MODFLOW) and
solute transport (MT3DMS – MODFLOW) models. Advective trans-
port has also been used in SW-GW modeling to reproduce temper-
ature observations (Brookfield et al., 2009; Engeler et al., 2011;
Kurtz et al., 2014; Mouhri et al., 2013), lake plume elevation
(Fienen et al., 2009; Hunt et al., 2006), advective front locations
(Anderman and Hill, 1997; Hill and Tiedeman, 2006), travel time
between a lake and a well (Pint et al., 2003) or to delineate the
hyporheic zone (Kasahara and Wondzell, 2003; Storey et al.,
2003). Particle tracking has already been used for parameter esti-
mation (Pint et al., 2003; Hunt et al., 2006). However, particle
tracking has never been used as a surrogate model for advective–
dispersive transport to simulate SW-GW exchanges, nor has it
been used with head and flow observations at production wells
to constrain heterogeneous conductivity fields.

In this study, we do not use concentration data directly for cal-
ibration. Rather, we use simulated and inferred mixing ratios,
which describe the fractional mixing of several end-member
waters with different chemical compositions (Carrera et al., 2004,
Rueedi et al., 2005). In this case, we examine the mixing of surface
water (SW) and groundwater (GW). Mixing ratios are commonly
inferred from concentrations measured in field-collected water
samples. We proposed a method to use MODPATH results to define
mixing ratios that can be compared with field-derived values. We
first benchmark our MODPATH-based approach against results
derived from MT3DMS advective-dispersion model results. There-
after, we apply our particle tracking surrogate model to a case
study and examine the benefits and limitations compared to cali-
bration with head data alone.
2. A proxy-model for Advective-dispersive transport

2.1. Approach

To test our proposed proxy modeling approach, we simulate
SW-GW mixing in a pumping well under steady-state flow condi-
tions. The value of the mixing ratio may range between 0 (GW
only) to 1 (SW only). For the sake of simplicity, we assume that
mass transport is non-reactive. The approach is based on using
backward tracking to determine the origins of a set of particles dis-
seminated around a sink point of interest (well or drain). The
method is based on the assumption that particle velocity and con-
centrations can be used to define the mass flux coming from a flow
tube (Atteia, 2011). The procedure to compute the mixing ratio (b)
at a given sink point can be detailed as follows:

1. The flow field is computed for steady state conditions with the
flow model.

2. A large number of particles (>=1000) are disseminated around
the sink point of interest.

3. Backward particle tracking is conducted from the sink point
back to the origin of flow (stream and boundary condition).

4. The mixing ratio at the sink point, b, is then calculated from the
fraction of the particles that originate in the stream or at a
boundary.

The procedure for the computation of the concentration associ-
ated with each particle, bi, depends on the type of the source point
(Fig. 1). When a particle originates from an external boundary con-
dition (prescribed head or flow) the particle concentration as it
reaches the sink simply corresponds to the mixing ratio of GW
(bi = 0) (Fig. 1, A). In contrast, a particle originating from an aquifer
cell in interaction with a stream is not necessarily entirely SW (bi =
1). Rather, these particles will be a mix of stream water and GW
(Fig. 1B). Determination of the average bi value for particles origi-
nating passing through these cells requires consideration of the
balance of flow into the cell from the stream and from neighboring
aquifer cells (Fig. 2). Defining water originating from the neighbor-
ing cells to have a mixing ratio of 0 (pure GW), the mixing ratio of
water leaving the cell, br, can be obtained as follows:

br ¼
QsX
i¼1

Qi

ð1Þ

where QS is the flow from the stream to the aquifer cell in interac-
tion with the stream and

P
i¼1

Qi is the sum of all inputs to this cell

(QS + QB + QL see Fig. 2), where QB is the flow from back and front
sides of the cell, QL is the flow from the left and right side of the cell
longitudinal to the stream. for the case depicted in Fig. 2). Note that
br will only be greater than zero for losing reaches (QS > 0).

The value of the mixing ratio, b, at the sink point (step 4) is
obtained from the mean of the respective particle mixing ratios,
bi, weighted by particle velocities, vi:

b ¼
X

i¼1
ðv i � biÞX
i¼1
v i

ð2Þ
2.2. Validation: a synthetic case

2.2.1. Model setting
The major assumption underlying the use of a particle tracking

surrogate model is that dispersion can be neglected for the mixing
ratios of the sink points. A synthetic 2D case is considered to test
this assumption. We consider a production well in an unconfined
aquifer in interaction with a stream (Fig. 3). The domain (100 �
150 m) is discretized with a fine 2D regular mesh (1 � 1 m cells),
which thus satisfies the criteria on the grid Peclet number to avoid
numerical dispersion with a finite difference scheme (Pe < 1), even
for a dispersivity of 1 m (Zheng and Wang, 1999). Lateral boundary
conditions are fixed head (FH): 10 m to the left and 9.5 m to the
right. No flow is imposed at the upper and lower domain bound-
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aries. The stream is simulated with a head-dependent flux
(Cauchy-type) boundary condition, with a head of 9 m and a con-
ductance of 0.01 m2 s�1. These boundary conditions have been
adjusted to achieve some mixing of SW and GW in the stream cells
(see cross-section in Fig. 3). The hydraulic conductivity is homoge-
neous over the model with a value of 3 � 10�4 m s�1. Aquifer thick-
ness is set to 30 m. Transmissivity is assumed to be independent of
water level fluctuations (MODFLOW parameter laycon = 0), Which
corresponds to the Boussineq assumption. Simulations have been
conducted for flow rates in the sink point ranging from 0 to
600 m3 h�1. The wells are considered as fully penetrating.

The stream water concentration is arbitrarily fixed to 1, while
fixed head boundary conditions yield water with concentration 0.
The SW-GW mixing ratio in the production well is simulated
with the advective–dispersive transport model MT3DMS and the
particle tracking code (MODPATH). Steady state flow conditions
are simulated with MODFLOW using the PCG solver. Models
(MODFLOW – MODPATH – MT3DMS) are pre- and post processed
using the Python wrapper FloPy (Bakker et al., 2016) and Qgridder
(Pryet et al., 2015) on the Qgis platform (QGIS, 2012). Particle track-
ingwithMODPATH isperformedwith a set of 1 000particles dissem-
inated around the production well, at 0.5 m from it. Exchange flow
with the stream is simulated with the weak source option set to 2,
which stops particles in cells with a weak source such as a stream
in losing condition. The IFACE parameter, used to associate a flow
termwith a grid cell face (Pollock, 1994) is set to 6, to be consistent
with recommendationofAbramset al. (2012) for surfacewaterweak
sinks. Theweak sink option is set to 1, which allows particles to pass
through cellswithweak sinks such as a stream in gaining conditions.
MT3DMS simulations are performed with HMOC solvers, which is a
hybrid of MOC and MMOC scheme (Zheng andWang, 1999), with a
longitudinal dispersionset to1 m.Thesamesimulationsarealsoper-
formed for a longitudinal dispersion set to 10 and 100 m to deter-
mine the impact of dispersion on the simulated mixing ratio in a
pumpingwell. Transverse dispersion is set to 10% of the longitudinal
dispersion.
2.2.2. Synthetic case results
Mixing ratios in the pumping well simulated with MODPATH

and MT3DMS are compared in Fig. 4. Both models yield very sim-
ilar results (Fig. 4A). Below a pumping rate of 100 m3 h�1, the head
in the well is above the head of the stream so that well water has a
mixing ratio of 0. Above this pumping rate, a mix of stream water
and water originating from the right fixed-head boundary condi-
tions supplies the well. The agreement between mixing ratios com-
puted with MT3DMS and MODPATH validates the proposed
approach in terms of particle count, weighting of each particle by
its velocity and computing the mixing ratios of stream particles
(bi). Results obtained with a longitudinal dispersion of 10 m and
100 m reveal interesting features (Fig. 4). In Fig. 4B) the same sim-
ulation as A) is performed for MODPATH that does not take into
account dispersion. When longitudinal dispersion reaches exces-
sively large values (100 m), b decreases, but remains similar (the
error on b is 6%). This can be compared to the uncertainty on mix-
ing ratio associated with measurement error, which generally



Fig. 3. MT3DMS and MODPATH simulations show mixing between surface water and groundwater, a cross-section describes model settings.
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range between 8 and 20% (Rueedi et al., 2005). For the presented
test case, even with an excessively large longitudinal dispersion
value of 100 m, the error of the surrogate model remains small
with respect to the expected measurement error.
3. Application

3.1. Study site

A particle tracking surrogate for transport model is applied to a
study of a well field, which supplies about 20% of the fresh water to
the urban area of Bordeaux (France) (Fig. 5). A stream crosses the
well field, so that stream-aquifer interactions are of strategic inter-
est. The stream flows over Plio-quaternary sandy materials, overly-
ing an Oligocene limestone aquifer. These two geological
formations are hydraulically connected, with similar hydraulic
conductivity, and therefore considered herein as a single heteroge-
neous aquifer (Canik, 1968).

Groundwater is abstracted with two pumping wells and a
500 m long drainage gallery equipped with a pump. The mean
hydraulic conductivity is on the order of 5�10�4 m s�1. The thick-
ness of the aquifer varies between 40 and 60 m. The structure of
the aquifer is highly heterogeneous, with some structures
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highlighted by field observations and geophysical surveys
(Cousquer, 2017). The width of the stream varies between 10 and
15 m, with a depth of about 1 m depending on the hydraulic
regime of the stream.

3.2. Field measurements

Flow and transport observations have been collected in the
field. Concentration measurements at the production wells and
drain are interpreted as a mixture of surface water and groundwa-
ter. The chemical composition of surface water is based on water
samples collected in the stream; the groundwater end-member is
based on water samples collected from a well sufficiently distant
from the stream to avoid mixing. The mixing model is based on
the concentrations Ca2+ and HCO3

–. Ion concentrations at produc-
tion wells and gallery are reported by orthogonal projection on
the mixing line that links the two end-members (Carrera et al.,
2004; Rueedi et al., 2005). Ion concentration is then obtained after
field water sampling on October 10th, 2015, and analyzed by a
DIONEX IC Columns for Ca2+ and titration for HCO3

–.
Estimates of mixing ratios may be affected by two kinds of

uncertainties: (i) on the location of end-members and (ii) mea-
sured concentrations of Ca2+ and HCO3

– for the point of interest.
The error on the end-member compositions has been estimated
by the standard deviation between concentrations of ions Ca2+

and HCO3
– in points estimated to be likely end-members. Three

piezometers have been selected to be likely groundwater end-
members and stream water was sampled at three locations. The
error on production well ions concentration is based on reported
analytical method errors. An uncertainty of about 8% (Fig. 6) was
found through error propagation on the orthogonal projection
equation (Hughes and Hase, 2010). Wells W1 and W2 and the
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drain have 10%, 30% and 90% stream water, respectively, which are
very contrasting values given their proximity to the stream. This
can be explained by the high heterogeneity of the aquifer that
can lead to preferential flow paths. Pressure was monitored in all
of the wells shown in Fig. 5.
3.3. Model development

Two models have been developed for parameter estimation.
Both models are based on the same spatial extents but they differ
in temporal discretization and in their underlying equations. Both
models are based on the assumption of a head-independent trans-
missivity (Boussinesq assumption) and consider 2D horizontal
flow only (Dupuit-Forchheimer assumption). The validity of this
latter hypothesis was verified with the criteria provided by
Haitjema (2016). The first model simulates transient flow with
MODFLOW-2005 (McDonald and Harbaugh, 1988). It aims to
reproduce observed water levels in the observations wells (Fig. 5)
over a period of 700 days. Stream level, drain level, recharge and
wells discharge are time varying boundary conditions and were
set according to field observations. The second model is the surro-
gate model for flow and advective transport under steady state
flow conditions. This model is based on MODFLOW-2005 and
MODPATH with the methodology described and tested in the pre-
vious section. The results of the second model will be compared
with simulated values from a third model based on the advec-
tive–dispersive transport code MT3DMS with a longitudinal dis-
persion of 1 m. This third model is not used for parameter
estimation process; rather, it is only used to assess the validity of
the surrogate model by comparing the values of mixing ratios
obtained with the surrogate model with those obtained with the
advection–dispersion model.

The model domain is centered on the well field and extends
over ca. 12 km2 (4.5 km � 2.6 km) (Fig. 6). Model boundary condi-
tions were set in accordance with regional groundwater heads and
flow directions (Cabaret, 2011). North and south boundary condi-
tions are head-dependent flux boundary conditions (GHB). East
and West boundary conditions are no flux. Both models are dis-
cretized on a 10 m � 10 m grid, with a total of 117 448 cells. The
stream is simulated with head-dependent flux boundary condi-
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tions (Cauchy-type) (Cousquer et al., 2017) with the MODFLOW
RIV package. The drain (gallery) is also simulated with head-
dependent flux boundary conditions with the MODFLOW DRN
package. Wells are represented by sink terms in corresponding
aquifer cells. Groundwater recharge is calculated with a reservoir
model (Ledoux et al., 1984) from climate data. Soil condition are
fairly homogeneous over the area of interest (Cousquer, 2017),
therefore a uniform recharge has been applied to the entire model
area.

3.4. Parameter estimation and uncertainty analysis

3.4.1. Parameter estimation
Parameter estimation was conducted to minimize the residual

between observed and simulated groundwater heads, discharge
rates at the drainage gallery, and mixing ratios at the production
wells and the drain. Both transient and steady state models are
used for parameter estimation as described in Fig. 7.

Fields of hydraulic conductivity and porosity have been param-
eterized with a set of 250 adjustable pilot points (de Marsily et al.,
1984) with an extension of pilot point value to grid cells by kriging
with an exponential viariogram, with a range of 250 m a sill of 1
and a nugget of 0.1 following the recommendations of Doherty
et al. (2011). Parameter estimation has been conducted with the
Gauss Levemberg Marqart Algorithm (GLMA), a non-linear Newton
method for parameter estimation, implemented in PEST++ (Welter
et al., 2012). A hybrid regularization Tikhonov-TSVD has also been
conducted to stabilize the solution (Fienen et al., 2009). The algo-
rithm is based on the minimization of an objective function repre-
senting the weighted mean square error between model outcome
values and measured values. In the presented test case, three data
types are considered in the objective function: water levels, wells
discharge rates and mixing ratios. It is preferred that each data
type is equally well represented in the objective function
(Anderson et al., 2015). Furthermore, for a given data type, each
observation location should be equally well presented. To satisfy
these two requirements, observations are weighted in the objec-
tive function as follows:

/ ¼
XL

l¼1

XKl

k¼1

XNk;l

i¼1

ðxk;l � r2k;lÞ ð3Þ

where L is the number of data types (heads, discharge rates, concen-
trations), Kl is the number of observation points for the l-th data
type, and Nk,l is the number of observation records for the k-th
observation point of the l-th data type (Nk,l = 1 when considering
steady state values). The weighing factor of each observation is
defined as follows:

xk;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nk;l � Kl � r2

k;l

s
ð4Þ

where rk;l is the standard deviation of the variable of interest. Every
observation of each station inside each data type is well balanced in
the pre-calibration objective function (Table 1).

A total of 38 000 model runs were required for parameter esti-
mation, which were run in parallel on a 20-core CPU. This required
2.75 days with the surrogate model, and would have required more
than a month if a classical advective–dispersive model had been
used. With the calibrated parameter set, the simulated values
showed a reasonably good adjustment with observed values, with
RMSE errors of: 0.19 m for heads in the observations wells; a RMSE
of 11.7 m3 h�1 for flow in the drainage gallery; and 11% for mixing
ratios at the 3 production wells. Parameter values estimated based
on the surrogate and MT3DMS are very close (Table 2), supporting
the use of the surrogate model.
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Table 2
Observed value of b and simulated value obtained with the surrogate model after
calibration and with MT3D for validation.

Observation point Simulated b MODPATH [%] Validated b MT3D [%]

Drain 92 90
W2 13 12
W1 49 51
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The calibrated hydraulic conductivity field of the flow-only
model is rather homogeneous except for the areas around produc-
tion well W1 and around the drain. However, the hydraulic con-
ductivity field based on head and mixing ratio data is more
heterogeneous, with corridors of high hydraulic conductivity
between the production wells and gallery. These preferential flow
paths were necessary to reproduce the observed mixing ratios,
while head data contained no information to constrain them.

3.4.2. Uncertainty of hydraulic conductivity using null-space Monte-
Carlo analysis

The solution obtained with the GLMA is not unique. A Null-
Space Monte Carlo (NSMC) analysis was performed to quantify
the uncertainty of the parameter values. The same analysis was
conducted for both the flow model only and with the surrogate
transport model. The NSMC procedure has been performed follow-
ing Tonkin and Doherty (2009). A series of 100 parameter sets fol-
Table 1
Quantitative details on the parameter estimation.

Adjustable parameter Number
GHB conductance [m2 s�1] 2
Recharge parameters [�] 2
River conductance [m2 s�1] 1
Drain conductance [m2 s�1] 1
Hydraulic conductivity

(pilot points) [m2 s�1]
250

Observations Number Measurement
error

Heads [m] 25 � 700 days 0.01 [m]
Wells/drain discharge [m2 s�1] 3 � 700 days 10 [m3 h�1]
Mixing ratio [%] 3 10%

Objective function model 1
(head + flux)

Initial Objectif
function

Final Objectif
function

Head group 0.430 0.009
Flux group 0.250 0.006
Total 0.680 0.015

Objective function model 2
(head + flux)

Initial Objectif
function

Final Objectif
function

Head group 0.430 0.012
Flux group 0.250 0.005
Mixing ratio group 0.420 0.010
Total 1.100 0.026

Objective function model 2
(head + flux)

RMSE

Head 0.19 m
Flux 11.7 m3 h�1

Mixing ratio 11%
lowing a log-normal law has been stochastically generated from
the previously obtained calibrated model. Then, each parameter
has been projected into the parameter null-space. Parameter sets
that did not sufficiently reproduce observations have been re-
calibrated. 82 parameter sets that provided an adequate calibration
were eventually selected. The uncertainty of the hydraulic conduc-
tivity is shown in Fig. 7. The fields were obtained by kriging the
standard deviation of the log value of the hydraulic conductivity
at the pilot points. These values were obtained from the standard
deviation of the 82 selected NSMC parameter sets.

When considering the flow model only (Fig. 8a), uncertainty is
more homogeneous than with the use of the surrogate model
(Fig. 8c). Uncertainty is relatively limited aroundW1,W2 and drain
on both models (Fig. 8b and d), this can be explained by the use of
well water levels and drain fluxes in the calibration target for both
models that leads to decreased uncertainty. However, using the
surrogate transport model (Fig. 8b) these zones with low uncer-
tainty are more extended and the global uncertainty on the con-
ductivity field decreases. There is also a correlation between
relatively high conductivity and low uncertainty. These preferen-
tial flow paths bring water to production wells to reproduce
well/drain discharge and mixing ratio observations. This clearly
indicates that the inversion made use of information contained in
the transport data to find potentially important features of the con-
ductivity field.
4. Discussion

The presented case study illustrates that the use of a surrogate
model can improve hydrogeologic interpretations with a consider-
able reduction of the computational burden. Importantly, paramet-
ric uncertainty is markedly reduced in the areas of the
hydrologically important structures.

The purpose of the surrogate model based on particle tracking is
not to replace original advective-dispersion models such as
MT3DMS, but to reduce the computational cost associated with
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operations that require a large number of model calls such as
parameter calibration, optimization, uncertainty and sensitivity
analysis. The synthetic model analysis (Section 2.2) suggests that
the effects of dispersion may be limited to sites with relatively high
dispersivities. The presented methodology has been developed for
non-reactive transport. It could, however, be extended to consider
degradation based on transient times, as it is often used for the
computation of groundwater age based on particle tracking
(Eberts et al., 2012). The method is described for a stream simu-
lated with a head-dependent flux (Cauchy-type) boundary condi-
tion. However, it could also be used with other kind of boundary
conditions (fixed head and fixed flux).

The principal limitation of the proposed method is related to
the effects of dispersion, especially under transient conditions. If
the hydrochemical dynamics are not steady-state, a succession of
steady-state periods representative of each system variation may
be considered (Haitjema, 2006). But, future research should exam-
ine the suitability of the particle tracking surrogate model
approach for transient flow conditions and for more complex
boundary conditions (Faybishenko et al., 1995; Grubb, 1993).

The presented surrogate model has only been described and
validated with 2D models. We have not identified any limitation
for the extension of the presented methodology to 3D models.
However, some experiments should be conducted on the weak
sinks modeling, especially the stream (Abrams et al., 2012; Starn
et al., 2012) and the vertical distribution of particles around par-
tially penetrating wells.

While there may be many conditions for which the proposed
surrogate model is not suitable, there are many real-world applica-
tions that are primarily focused on contaminant transport of a
pumping well in the vicinity of a stream (Derx et al., 2010;
Doppler et al., 2007; Engeler et al., 2011; Kurtz et al., 2014). These
applications alone warrant consideration of the use of the surro-
gate model and mixing ratios to reduce parameter uncertainty
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and improve the reliability of predictions while avoiding excessive
computational demands.

5. Conclusion

The proposed surrogate model has proven to be efficient for the
simulation of SW-GW mixing ratios at sink points (wells or drains)
during steady state flow for non-reactive species. Very short com-
putation times of the surrogate transport model make possible the
execution many thousands of model runs in a reasonable amount
of time. The introduction of SW-GW mixing ratio data in the
parameter estimation process markedly reduced the uncertainty
on the field of hydraulic conductivity and identified potentially
important hydrogeologic structures. Although the method is not
universally applicable, it may be useful for a variety of cases of
strategic importance. In particular, surrogate models may improve
our ability to manage drinking water supply wells in the vicinity of
surface water bodies. These benefits may include both improved
hydrogeological characterization and improved parameter estima-
tion, with more quantitative uncertainty analyses, to support
decision-making under uncertainty.
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