
R E S E A R CH A R T I C L E

Influence of landscape and hydrological factors on stream–air
temperature relationships at regional scale

Aurélien Beaufort1,2 | Florentina Moatar2 | Eric Sauquet2 | Pierre Loicq1 |

David M. Hannah3

1EA 6293 GéHCO Géo-Hydrosystèmes

Continentaux, Université François-Rabelais de

Tours, Parc de Grandmont, Tours, 37200,

France

2UR RiverLy, Irstea, centre de Lyon-

Villeurbanne, 5 rue de la Doua CS 20244,

Villeurbanne, 69625, France

3School of Geography, Earth and

Environmental Sciences, University of

Birmingham Edgbaston, Birmingham, B15 2TT,

United Kingdom

Correspondence

Aurélien Beaufort, UR RiverLy, Irstea, centre

de Lyon-Villeurbanne, 5 rue de la Doua CS

20244, Villeurbanne 69625, France.

Email: aurelien.beaufort@irstea.fr

Funding information

French Agency for Biodiversity

Abstract

Identifying the main controlling factors of the stream temperature (Tw) variability is

important to target streams sensitive to climate and other drivers of change. The

thermal sensitivity (TS), based on relationship between air temperature (Ta) and Tw,

of a given stream can be used for quantifying the streams sensitivity to future climate

change. This study aims to compare TS for a wide range of temperate streams located

within a large French catchment (110,000 km2) using 4 years of hourly data

(2008–2012) and to cluster stations sharing similar thermal variabilities and thereby

identify environmental key drivers that modify TS at the regional scale. Two succes-

sive classifications were carried out: (a) first based on Ta–Tw relationship metrics

including TS and (b) second to establish a link between a selection of environmental

variables and clusters of stations. Based on weekly Ta–Tw relationships, the first clas-

sification identified four thermal regimes with differing annual Tw in terms of magni-

tude and amplitudes in comparison with Ta. The second classification, based on

classification and regression tree method, succeeded to link each thermal regime to

different environmental controlling factors. Streams influenced by both groundwater

inflows and shading are the most moderated with the lowest TS and an annual ampli-

tude of Tw around half of the annual amplitude of Ta. Inversely, stations located on

large streams with a high distance from source and not (or slightly) influenced by

groundwater inflows nor shading showed the highest TS, and so, they are very cli-

mate sensitive. These findings have implications for guiding river basin managers and

other stakeholders in implementing thermal moderation measures in the context of a

warming climate and global change.
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1 | INTRODUCTION

Water temperature (Tw) is a fundamental water quality parameter that

controls aquatic community structure and affects ecological processes

in rivers and streams (Caissie, 2006; Comte, Buisson, Daufresne, &

Grenouillet, 2013; Jonsson & Jonsson, 2009; Webb, Hannah, Moore,

Brown, & Nobilis, 2008). The impacts of global change on hydro-

systems are potentially numerous and result from changes in extreme

precipitation frequency and increased air temperature (Ta), evapora-

tion, and dry periods (e.g., Garner, Hannah, & Watts, 2017; Watts
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et al., 2015). The rise of Ta is expected resulting in warmer stream Tw

(Garner, Hannah, Sadler, & Orr, 2014; Hannah & Garner, 2015;

Mohseni & Stefan, 1999; van Vliet et al., 2013), which could be

exacerbated by the reducing of summer stream flows especially in

temperate climate (Isaak et al., 2010; van Vliet et al., 2013). In France,

several studies have already highlighted an increase in Tw across vari-

ous rivers (Bustillo, Moatar, Ducharne, Thiéry, & Poirel, 2014; Jackson,

Fryer, Hannah, & Malcolm, 2017; Jackson, Fryer, Hannah, Millar, &

Malcolm, 2018; Jackson, Hannah, Fryer, Millar, & Malcolm, 2017;

Moatar & Gailhard, 2006). There is therefore a growing interest in

understanding the spatio-temporal variability of river thermal regime

given the likely effects of climate change (increase of both the Ta and

the evapotranspiration, shift in river flow regimes and of groundwater

inflows, etc.; Webb et al., 2008; Moatar et al., 2010). The goal is to

develop opportunities for mitigation and adaptive management of

river systems (Boisneau, Moatar, Bodin, & Boisneau, 2008;

Hrachowitz, Soulsby, Imholt, Malcolm, & Tetzlaff, 2010; Jackson,

Malcolm, & Hannah, 2015; Kurylyk, MacQuarrie, Linnansaari, Cunjak, &

Curry, 2015).

The Tw variability, described by metrics of flow magnitude, fre-

quency, duration, timing, and rate of change, on various timescales

(Jones & Schmidt, 2018), is influenced by complex processes related

to atmospheric, hydrogeological, geomorphic, and landscape charac-

teristics and anthropogenic pressures, which could interact at multiple

spatial scales (Caissie, 2006; Hannah & Garner, 2015). Numerous

studies have highlighted the importance of riparian forest and ground-

water inflows in moderating Tw variability (Dugdale, Malcolm,

Kantola, & Hannah, 2018; Garner, Malcolm, Sadler, & Hannah, 2017;

Kelleher et al., 2012; Lalot et al., 2015; Loicq, Moatar, Jullian,

Dugdale, & Hannah, 2018). Identifying the main controlling factors of

Tw variability remains an important task to target streams sensitive to

climate change and to develop mitigation action to preserve aquatic

ecosystems (Jackson et al., 2018).

Classification and regression tree (CART) of hydrological and

landscape-dependent variables are informative and revealing methods

to answer explore patterns without introducing an a priori structure

of the link between explanatory variables and metrics describing Tw

variability (Arismendi, Johnson, Dunham, & Haggerty, 2013; Casado,

Hannah, Peiry, & Campo, 2013; Chu, Jones, & Allin, 2009).

Some studies, in various parts of the world, considered explicitly

and empirically the role of a limited number of basin properties on Tw

(e.g., Garner et al., 2014; Hrachowitz et al., 2010; Jackson et al., 2015;

Faye L. Jackson, Fryer, et al., 2017; Faye L. Jackson et al., 2018;

Jackson, Hannah, et al., 2017 in the UK; Isaak & Hubert, 2001; Isaak

et al., 2010; Nelitz, MacIsaac, & Peterman, 2007, in North America).

Analyses in most of these studies are carried out on a site-by-site

basis, which limits the extent to which broad patterns can be inferred

(Laizé, Bruna Meredith, Dunbar, & Hannah, 2017). Some regional-scale

studies have used spatial thermal regime classification based on a large

set of catchment properties (Chu et al., 2009; Laizé et al., 2017;

Maheu, Poff, & St-Hilaire, 2016; Rivers-Moore, Dallas, & Morris,

2013; Tague, Farrell, Grant, Lewis, & Rey, 2007). These studies

succeeded in identifying key drivers that influence the thermal regime

of streams at the regional scale. Most of these studies use on metrics

summarizing the warmest aspects of the Tw regime to examine the

threats to cold-water species under climate change.

Several researchers analyse the relationship between Tw and Ta,

with Ta taken as a surrogate of the main climatic drivers (Ducharne,

2008; Garner et al., 2014). Ta is a common variable, easily measured

on the field, and it is strongly correlated to solar radiation (Bustillo

et al., 2014). Kelleher et al. (2012) studied the thermal sensitivity (TS)

of streams to represent the relative sensitivity of Tw of a given stream

to environmental change. TS is defined as the slope of the regression

line between Ta and Tw, which can be linear (or logistic) and can be

fitted on data averaged at different timescales (Mohseni & Stefan,

1999; O'Driscoll & DeWalle, 2006; Stefan & Preud'homme, 1993). TS

summarizes the cumulative buffering effects of local landscape char-

acteristics on stream temperatures. Although TS may evolve into the

future due to the changing drivers considered above, TS computed for

a specific period of record gives insight of which streams have the

greatest sensitivity to climate based on contemporary conditions,

which can be used as a baseline for responsiveness (Kelleher et al.,

2012). However, this integrated variable cannot distinguish the cause

and effect of groundwater and riparian vegetation shading on Tw vari-

ability (Chang & Psaris, 2013; Chu et al., 2009; O'Driscoll & DeWalle,

2006). Understanding the importance of these driving factors is

essential to develop appropriate strategies to mitigate and adapt to

stream heating under anticipated climate warming.

The aim of our study is (a) to provide a comparison of thermal sen-

sitivity (TS) across a wide range of French temperate streams, based

on 4 years of hourly data (2008–2012), and (b) to identify groups of

streams with similar sensitivity and so infer the environmental key

factors that control TS at the regional scale. For that purpose, two

successive classifications of 127 stations located in the Loire catch-

ment (Beaufort et al., 2016) were carried out: (a) first based on Ta–Tw

relationship metrics including TS and (b) second to establish a link

between a selection of environmental variables and thermal regimes

of stations. Finally, the relative importance of environmental variables

on the TS of streams is investigated, and the implication for river man-

agement and river restoration is discussed.

2 | MATERIAL AND METHODS

2.1 | Sites and temperature data

2.1.1 | Basin description

The Loire basin (Figure 1) comprises a hydrographical network of

88,000 km and drains a catchment area of 117,000 km2. It is char-

acterized by varying climates between the upstream and the down-

stream (annual rainfall between 550 and 2,100 mm/year and

annual air temperature between 6�C and 12.5�C), landform (10% of

the basin area >800 m; mean altitude = 300 m), and lithology (meta-

morphic, magmatic, and sedimentary rocks). The percentage of

riparian vegetation, defined on a buffer zone of 10 m on both

sides of the streams, is globally greater in the southern basin

where the altitude is the highest (mean ratio of the riparian
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vegetation = 75%; dark green; Figure 1c). Streams located in the

central part of the basin, mainly composed of sedimentary rocks,

benefit more from groundwater contributions (Figure 1d). The main

aquifers are found in the sedimentary rocks in the centre of the

basin. The Beauce formations (12,700 km2) are composed of many

semipermeable aquifers (Mohseni & Stefan, 1999) with numerous

groundwater inflows located at the north of the Loire basin. Some

streams are very directly connected to this aquifer, and their flow

depends on the level of the Beauce water table (Baratelli, Flipo, &

Moatar, 2016).

2.1.2 | Field monitoring

Tw was monitored, hourly, at 127 stations managed by the French

Agency for Biodiversity (http://www.naiades.eaufrance.fr), between

July 2008 and December 2012, distributed across the Loire basin

(Figure 1b). The monitoring stations are mainly located on streams

with a Strahler order between 3 and 5 (78% of stations). All monitor-

ing stations are located on streams with low direct human influence

on the flow regime, and all time series of Tw have been scrutinized to

discard streams influenced by dam operations. The mean annual water

temperatures of these stations range from 7.5�C to 15.7�C. The

highest mean annual temperatures were observed on large rivers such

as the Loire (Strahler Order 8) and its main tributaries, where mean

annual Tw ranged between 14�C and 15.7�C between 2008 and 2012

(Figure 1a; Beaufort et al., 2016). Colder temperatures (<9�C) were

observed in the upstream reaches of the Loire River where the alti-

tude is above 1,000 m. The annual Tw at stations located on small

streams (51 stations <30 km from upstream sources) did not exceed

13�C (Figure 1b). Moreover, gaps in Tw time series between 2008 and

2012 exist, and the proportion of missing values is about 35% on aver-

age for the 127 stations (80 stations with more than 20% of missing

F IGURE 1 Presentation of the Loire catchment: (a) altitude and location of monitoring stations, (b) location of the 127 water temperature
monitoring stations presented with the spatial distribution of mean annual stream temperatures (TwA), (c) vegetation cover besides streams
(Valette, Piffady, Chandesris, & Souchon, 2012), and (d) main aquifer formations and basin lithology
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values in time series). To limit biases in the calculation of indicators for

each station, hydrological years with more than 15% of missing daily

values (threshold based on previous studies (Beaufort et al., 2016;

Aurélien Beaufort, Lamouroux, Pella, Datry, & Sauquet, 2018)) or with

missing values during August or January are excluded from the analy-

sis. The length of available records for the 127 stations time series var-

ies between 1 (56 stations), 2 (29 stations), 3 (27 stations), and 4 years

(15 stations).

The hourly Ta was taken from the SAFRAN (Système d'analyse

fournissant des renseignements atmosphériques à la neige) reanalysis

data (grid 8 km) at hourly time step between 2008 to 2012 (Quintana-

Seguí et al., 2008; Vidal, Martin, Franchistéguy, Baillon, & Soubeyroux,

2010). Ta is extracted from the SAFRAN mesh (64 km2) overlapping

the station. The mean annual Ta of these stations ranges from 6.4�C

to 12.5�C. The coldest temperatures are observed in the mountainous

part of the basin (mean annual Ta < 10�C), whereas the warmest tem-

peratures are observed in the west and in the sedimentary plain (mean

annual Ta > 11�C).

Both hourly Ta and Tw have been averaged over the day and over

the week in the next section.

2.2 | Metrics of air–water temperature relationship

We used four metrics to characterize the relation between air and

water temperature. (a) Two of these metrics, the thermal sensitivity

(TS) and intercept (b), provide information on the link between weekly

Tw and Ta over the year. Weekly linear regressions were selected on

the basis of the best mean R2 fitted for the 127 stations in comparison

with daily or logistic regressions.

For each station, a linear regression is fitted between the weekly

Tw (Tw7D) and the weekly Ta (Ta7D) and the distribution of slopes,

hereafter called thermal sensitivity (TS), and intercept (b) were

analysed (Equation 1; Kelleher et al., 2012; O'Driscoll & DeWalle,

2006).

Tw7D= Ta7D× TS+ b: ð1Þ

(b) Two others metrics, ΔTJan and ΔTAug, are based on the seasonal

difference between monthly Tw and Ta. For all stations, the monthly

Tw (MTw) is the coldest in January and the warmest in August. To

account for the relative sensitivity of Tw during extreme months, we

introduced two metrics, which are the differences between the

monthly Ta (MTa) and Tw in January (ΔTJan) and in August (ΔTAug)

averaged between 2012 and 2016:

ΔTJan =

Pi=Ny

i=1
MTaJan ið Þ−MTwJan ið Þð Þ

Ny
, ð2Þ

ΔTAug =

Pi=Ny

i=1
MTaAug ið Þ−MTwAug ið Þð Þ

Ny
, ð3Þ

where ΔT is the mean difference between monthly Ta (MTa) and Tw

(MTw) calculated in January or August, MTaJan(i) and MTaAug(i) are

respectively the monthly Ta in January and August of the year i,

MTwJan(i) and MTwAug(i) are respectively the monthly Tw in January

and August of the year i, and Ny is the number of year where monthly

Ta and Tw are both available (1 ≤ Ny ≤ 4, see Section 2.1).

2.3 | Explanatory variables

A set of eight explanatory variables was selected to explain the

observed spatial pattern in TS and identify main drivers of thermal

streams moderation. The variable selection was based on the most

pertinent variables identified in literature and on the results of a prin-

cipal component analysis (not presented here) to minimize depen-

dency between variables.

The distance from the source (D in km) and the elevation (E in m)

are determined at the location of each monitoring station. The slope

of the river reach (S in m m−1) where the station is located is deter-

mined with BD ALTI® 25-m resolution DTM dataset (IGN Paris,

France). A higher S increases the flow velocity, and E influences Tw

through the association with the adiabatic lapse rates of Ta and also

through snow and glacier meltwater inflow, which should cool Tw at

higher elevations. Streams with a high D have more time to equilibrate

their Tw with Ta.

Two hydrological indicators were also introduced. (a) The base-

flow index (BFI) was estimated with the method of the Institute of

Hydrology (1980) between 2008 and 2012. The BFI is a measure of

the proportion of the low-flow component to the total river flow with

values between 0 and 1. Details on calculation can be found in

Gustard, Bullock, and Dixon (1992). Low values are related to catch-

ments with no storage capacity and also to catchments exposed to

very high climate variability resulting in severe low-flow and quick

run-off in response to rainfall events. High values are observed where

artificial reservoirs, large aquifers, and storage in snow packs moder-

ate the variability of daily flow. In our study, BFI is considered as a

proxy of groundwater influence. The discharge Q was not monitored

at Tw station, and each Tw station was coupled to the nearest gauging

station (distance between both stations ranges from 10 m to 15 km).

The matching is based on two criteria: (a) The gauging stations has to

be located in the same or nearby streams and (b) the difference of

catchment area between the location where Tw was measured and

the location where Q was measured was kept to a maximum of ±20%.

The daily discharge was extracted from the French river flow monitor-

ing network (HYDRO database, http://www.hydro. eaufrance.fr/).

(b) The average specific discharge in August (QAug) is calculated at

each station between 2008 and 2012. The goal is to measure the

capacity of the catchment to produce a flow in summer, when precipi-

tation is low. The specific discharge is the ratio between the discharge

and the corresponding catchment area (in L s−1 km−2) and is used to

standardize discharge for basin area.

Two climatic variables were determined from the Safran reanalysis

data: (a) the mean summer cumulated precipitation (P in mm) and

(b) the mean summer potential evapotranspiration (PET in mm) both
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calculated between June 1 and September 30 of each year between

2008 and 2012 for the entire upstream area of each monitoring sta-

tion. Streams with wetter basin (high P and low PET) are expected to

have higher water yields and more groundwater contributions that

should cool streams (Isaak et al., 2017).

One variable was determined to characterize the riparian vegeta-

tion. A shading factor (SF), corresponding to a coefficient of reduction

of the overall incident radiation, was estimated by Valette et al.

(2012). SF gives the averaged vegetation cover (%) derived from a

buffer of 10 m of vegetation polygons on both sides of reaches from

the BD TOPO® database, provided by Institut national de l'informa-

tion géographique et forestière (IGN). SF has been calculated between

7 a.m. and 9 p.m. over the summer period between June 1 and

September 30 over the period 2008–2012, when the effect of shad-

ing is at its annual seasonal maximum for the North Hemisphere. The

model of Li, Jackson, and Kraseski (2012) was implemented in its sim-

plest version, that is, considering rectangular trees, located at the edge

of the bank, without overhang.

SF =
H× cotΨ × sinδ

W
× vc, ð4Þ

where H is the tree height (assumed to be 20 m everywhere), W is the

stream width, estimated using the ESTIMKART empirical model

(Lamouroux et al., 2010), Ψ is the solar elevation angle, δ is the angle

between solar azimuth and the mean azimuth (0–180�) of the river

reach, and vc is the vegetation cover (%).

2.4 | Statistical classification and explanatory
variables

2.4.1 | Thermal regimes clustering

To identify natural thermal regimes of stations sharing similar Ta–Tw

relationship, an agglomerative hierarchical clustering (AHC) has been

used. The AHC is based on the four metrics described above (TS, b,

ΔTJan, and ΔTAug). The Euclidean distance is used to measure the dis-

similarity, and clusters are found with the Ward's minimum variance

method. The stability of clusters is assessed through a bootstrap

approach with the R package “fpc” (Hennig, 2019), and the similarity

between each new cluster set and initial cluster was assessed with

the Jaccard index (Hennig, 2007; Maheu et al., 2016). The Jaccard

coefficient ranges from 0 to 1, and a cluster with a coefficient larger

than 0.75 can be considered as stable (Maheu et al., 2016). Each ther-

mal regime identified is described in terms of magnitude (mean Tw

over a month) and amplitude (differences between the maximum and

minimum values of MTw) and compared with MTa.

2.4.2 | Identification of environmental drivers in
thermal sensitivity

A CART is used to examine the relationship between TS and the set of

explanatory variables described above. CART analysis (Breiman, Fried-

man, Stone, & Olshen, 1984) is nonparametric and non-linear and does

not introduce an a priori structure of the link between explanatory

variables and the variable to be explained contrary to generalized lin-

ear models implicit assumption (Breiman et al., 1984; Ripley, 1996).

CART recursively partitions observations in a matched data set, con-

sisting of TS (response) and the eight explanatory variables, into pro-

gressively smaller groups (De'ath & Fabricius, 2000). Each partition is

a binary split. During each recursion, splits for each explanatory vari-

able are examined, and the split that leads to the most homogeneous

subgroups with respect to the dependent variable is chosen. The

interpretation of results summarized in a tree with series of logical if-

then conditions (tree nodes) is very simple. We used the R package

“rpart” (Version 4.1, Therneau & Atkinson, 2018) for implementing the

CART model. The random forest (RF) model was used to assess the

importance of explanatory variables for the prediction of TS and to

evaluate the robustness of the classification. RF combines decision

trees obtained by resampling the calibration set (Breiman, 2001),

which is constituted by selecting randomly 80% of the observations

(80% of 127 stations × eight explanatory variables × TS), and the test

set consists of the remaining 20%. We used the implementation in the

R package “randomForest” (Liaw & Wiener, 2002). The explanatory

variable importance is given directly by the “randomForest” algorithm,

which determines how much the mean square errors in prediction

increases when that covariate is randomly permuted within the tree.

The random selection is performed 100 times, and the explanatory

variables importance for each test set was then averaged.

3 | RESULTS

3.1 | Distribution of thermal sensitivity and link with
catchment size

The R2 values for weekly Ta and Tw ranged from.83 to.98, with values

greater than.9 at 123 of the 127 sites. TS ranges from 0.42 (Figure 2b)

to 1.2 (Figure 2a), and b ranges from 0.5�C to 7.5�C. Regression lines

plotted for the 127 stations showed a higher range of values of Tw

when Ta is high at the regional scale (Tw ranges between 15�C and

30�C when Ta is 25�C) than when Ta is low (Tw ranges between 0�C

and 7.5�C when Ta is 0�C; Figure 2c).

The relationship between TS and b shows a moderate negative

correlation with R2 ≈ 0.7. Stations with the lowest TS (<0.6) and the

highest b have the highest residual and seemed to follow a different

pattern than other stations (Figure 3a; all the points are located above

the regression line). Stations having a moderate TS between 0.6 and

0.9 are most often observed across the Loire River basin, and their

associated b ranges from 1�C to 5�C. Stations with a high TS (>0.9)

and a small b (<3) follow the same trend and have small residuals of

the slope intercept regression. The analysis of weekly Ta–Tw relation-

ship indicates that TS generally increases with stream size and the dis-

tance from source (Figure 3b). Streams with a distance from source

higher than 100 km2 obtain a TS higher than 0.7. For small and

medium rivers (D < 100 km), the range of TS is large and between 0.42

and 1.

BEAUFORT ET AL. 5



The analysis of the spatial distribution of TS in the Loire basin

shows that the stations obtaining the smallest TS (TS < 0.5) are located

in the sedimentary plain where the main aquifer formations are

located (Figure 4). The stations with the highest TS (TS > 0.9) are

located along large rivers in the sedimentary plain and in the western

side of the basin where the altitudes are the lowest and Ta the

highest. Finally, stations located in the regions with the highest alti-

tude obtain a moderate TS lower than 0.7.

3.2 | Cluster classification analysis

The AHC yielded four clusters of station corresponding to four ther-

mal regimes:

• WarmHighVar—warm and high variability (47 sites—37%): stations

characterized by low b (<3�C) and high TS (>0.8). At these stations,

MTw is higher than MTa in January and August with a median dif-

ference of 1.5�C (Table 1). These stations are those with the

highest annual amplitude ofMTw reaching 18�C with similar annual

MTa amplitude (red area; Figure 5a,b). Their MTws are the warmest

during summer and exceed 21�C on average.

• WarmLowVar—warm and low variability (23 sites—18%): These

stations are characterized by a smaller TS and a higher b (median

b = 3.5�C) than stations from WarmHighVar. MTa is less than MTw

in winter with a median deviation of 3�C. In August, the MTw is

very close to MTa, and ΔTAug does not exceed 1�C. They have

annual MTw amplitude of 14�C and MTw smaller than 4�C in

F IGURE 3 Distribution of TS:
(a) relationship between b and TS of
weekly Tw–Ta linear regressions and
(b) TS as a function of the distance from
the source (D) of monitoring stations

F IGURE 2 Tw–Ta weekly linear
regression: (a) for the station with the
highest TS, (b) for the station with the
lowest TS, and (c) for the 127 stations
fitted on data available between 2008 and
2012. Dashed lines represent the curve x
= y, solid lines represent the weekly linear
regression curves for each station, and the
black solid lines in (c) correspond to
weekly linear regression curves of stations
represented in (a) and (b), and grey points
in (c) represents all the observations

6 BEAUFORT ET AL.



summer in comparison with the MTw of stations from

WarmHighVar (yellow area; Figure 5a,b).

• ColdHighVar—cold and high variability (44 sites—35%): Stations

have MTw higher than MTa in January by 2�C (Table 1). Inversely,

in August, MTw is less than MTa by 2�C. The TS and b of stations

have rather average values with medians of 0.7 and 2.9, respec-

tively. They have annual MTw amplitude of 14�C and MTw less

than 5�C in summer in comparison with the MTw of stations from

WarmHighVar (green area; Figure 5a,b).

• ColdLowVar—cold and low variability (13 sites—10%): Stations

demonstrate the lowest TS of each class (TS < 0.7) and the highest

b (greater than 4.9�C). The differences between MTw and MTa are

high, in comparison with other thermal regimes, whether in August

(MTa > MTw by 3.5�C) or in January (MTa < MTw by 4�C). These

stations are those with the lowest annual MTw amplitude of 9�C,

which is one half less than the amplitude of stations from

WarmHighVar (blue area; Figure 5a). The MTw of stations from

ColdLowVar is the lowest during summer (MTw = 15�C) and the

warmest during winter in comparison with others thermal regimes

(Figure 5c).

The thermal regimes named “WarmHighVar” and “ColdLowVar”

were stable clusters and had a Jaccard coefficient larger than 0.7.

The thermal regimes called “WarmLowVar” and “ColdHighVar”

were less stable clusters and had Jaccard coefficients of 0.55 and

0.61, respectively. The analysis of the deviation from the mean

annual Tw (MTw) and of MTw averaged over the four clusters iden-

tified by AHC led to distinguish significantly different thermal

regime in terms of magnitude and amplitudes (Figure 5a,c) in com-

parison with MTa (Figure 5b,d).

The MTa patterns of each cluster demonstrate a very similar

amplitude and magnitude (Figure 5b,d) with annual amplitude close to

18�C following the same amplitude of thermal regime WarmHighVar.

The different response of each thermal regime to same climate condi-

tions suggests other controlling factors than climate determine the

annual amplitude and magnitude of Tw.

3.3 | Drivers of thermal sensitivity (TS)

The CART model output leads to develop dichotomic tree plots to

better visualize the effects of main drivers (Figure 7). The three most

important explanatory variables used by the model to cluster stations

as a function of their TS are SF, D (distance from source), and BFI

(Figure 6). This is consistent with the RF model output where D, SF,

and BFI are identified as the main environmental variables to explain

the TS of streams (variable importance >15%; Figure 6). The variables

QAug and S are also used to differentiate clusters in the CART model

and obtained a moderate importance close to 8% with RF. Elevation

(E) is identified as the fourth relevant variable with RF model (variable

importance = 11%; Figure 6) but is not used by the CART model for

TABLE 1 Metrics averaged for each thermal regime determined with the agglomerative hierarchical clustering

Cluster TS b ΔTJan ΔTAug

WarmHighVar—warm and high variability

47 sites—37%

Max 1.2 3.5 −0.4 1.1

Med 0.9 2.2 −1.4 −1.6

Min 0.8 0.6 −2.7 −4.2

WarmLowVar—warm and low variability

23 sites—18%

Max 0.8 4.7 −1.7 1.0

Med 0.8 3.5 −3.1 −0.3

Min 0.7 2.5 −4.0 −1.1

ColdHighVar—cold and high variability

44 sites—35%

Max 0.8 4.3 −0.8 5.8

Med 0.7 2.9 −1.8 1.9

Min 0.6 1.2 −4.1 0.7

ColdLowVar—cold and low variability

13 sites—10%

Max 0.7 7.6 −2.9 4.7

Med 0.5 5.7 −4.0 3.5

Min 0.4 4.9 −5.7 1.1

F IGURE 4 Spatial distribution of TS calculated between 2012 and
2016 on weekly Ta–Tw regressions
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stations clustering. Others variables have a lower influence on TS and

are not used in the dichotomic tree plot from the CART model.

• C1—low TS with high SF and high BFI: The combined effect of a

high SF (SF > 30%) and a high BFI (BFI > 0.8) led to strongly reduce

TS of streams (mean TS of 0.5; Figure 7). The 11 stations having

these characteristics belong to the thermal regime ColdLowVar

(Table 2).

• C2 and C3—low and moderate TS with high SF: Streams with an SF

higher than 30% and a BFI less than 0.8 belong mostly to the ther-

mal regime ColdHighVar from AHC results (Figure 7). QAug has also

an important influence, and we can see contrasts in terms of TS

within this class. The TS was lower for the 17 stations located on

streams with a QAug value higher than 5 L s−1 km−2 (mean TS =

0.67; C2) than for the 29 remaining stations in C3 with a QAug

value less than 5 L s−1 km−2 (mean TS = 0.76).

• C4—moderate TS with low SF, low D, and high BFI: The six stations

with SF less than 30%, a D less than 120 km, and a BFI greater than

0.8 have a moderate TS (mean TS of 0.71, C4) and belong to the

two thermal regimes WarmLowVar and ColdLowVar (Table 2).

• C5 and C6—moderate and high TS with low SF, low D, and low BFI:

Stations located on small and medium streams (S < 120 km) with a

BFI lower than 0.8 obtained moderate and high TS. The TS of the

13 stations located on streams with a higher slope (S > 2.5 m km−1)

F IGURE 5 Representation of (a) the
deviation from the mean annual Tw,
(b) the deviation from the mean annual Ta,
(c) the monthly Tw, and (d) the monthly Ta
averaged over the four thermal regimes
identified by agglomerative hierarchical
clustering. The colour area bars represent
± standard deviation of each series

F IGURE 6 Variable importance to explain TS
for all stations ranking from the highest to the
lowest obtained from random forest
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have a lower sensitivity (mean TS of 0.81; C5) in comparison with

the 28 remaining stations from C6 (mean TS of 0.88; C6). The

13 stations in C5 mostly belong to the thermal regime War-

mLowVar, whereas the 28 stations in C6 mostly belong to the

thermal regime WarmHighVar (Table 2).

• C7—high TS with low SF, low D, and high BFI: Stations located on

streams with low SF (SF < 30%) and a high D (D > 120 km) have the

highest TS (mean TS of 1; C7; Figure 7). The 23 stations having

these characteristics belong to the thermal regime WarmHighVar

(Table 2).

4 | DISCUSSION

4.1 | Regression robustness and comparison with
other studies

In our case study, best correlations between Ta and Tw were obtained

with linear regression models and at the weekly time step, with a

mean R2 of 0.96 (standard deviation [SD] = 0.02) determined for the

127 stations. Weekly Ta–Tw linear regressions slightly outperform

daily Ta–Tw linear regressions (mean R2 = 0.88; SD = 0.03) as well as

F IGURE 7 Regression and classification on tree developed for TS for all explanatory variables. In each cluster, the mean TS, the mean b, their
standard deviation on (in brackets), and the number of stations (n) are presented. Histograms under each branch indicate the thermal regimes of
stations identified by the agglomerative hierarchical clustering analysis

TABLE 2 Explanatory variables presented for each thermal regime identify with the agglomerative hierarchical clustering

Cluster OS D (km) E (m) S (m km−1) SF (%) BFI (—) QAug (L s−1 km−2) P (mm) PET (mm)

WarmHighVar Max 8 896 323 12.6 60 0.81 1.1 294.0 308.7

Med 5 122 101 0.5 20 0.72 2 211.2 283.1

Min 3 19 10 0.1 0 0.51 0.3 144.5 258.6

WarmLowVar Max 5 145 1120 29.7 29 0.95 3.7 352.2 313.1

Med 4 36 282 3.3 15 0.74 3 214.0 284.9

Min 2 7 88 0.1 0 0.64 0.2 140.9 261.0

ColdHighVar Max 6 96 755 26.1 77 0.78 9.9 302.9 313.5

Med 4 26 232 3.3 50 0.71 4 231.3 281.8

Min 2 4 41 0.1 30 0.49 0.1 151.4 256.4

ColdLowVar Max 5 73 231 3.8 71 0.92 1.7 237.1 312.6

Med 3 24 122 1.5 50 0.86 5 188.0 283.2

Min 2 6 65 0.1 19 0.81 0.5 148.0 248.6
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daily (mean R2 = 0.86; SD = 0.05) and weekly (mean R2 = 0.93; SD =

0.03) logistic regressions. The weekly time step is more accurate

because this time step filters out the lag time between Ta and Tw

peaks, which can be of several days. In contrast to other studies

(e.g., Kelleher et al., 2012), taking into account a non-linear relation-

ship between Ta and Tw did not improve the performance of the

regressions. This is probably explained by the fact that the Loire basin

is not subject to Ta (min weekly Ta across the Loire basin between

2008 and 2012 = −8�C) as low as in cold, continental regions studied

in the contiguous United States (min Ta = −20�C; Omid Mohseni, Ste-

fan, & Erickson, 1998; Kelleher et al., 2012), which makes Ta–Tw rela-

tionship more non-linear for low values. In comparison with the

studies using weekly Ta–Tw linear regressions, the R2 values calculated

on the 127 stations are on average higher (mean R2 = 0.96) and com-

parable with the results of Webb (1992) and O'Driscoll and DeWalle

(2006). The negative correlation between TS and b is also consistent

with previous studies. Streams controlled by groundwater inflows are

characterized by intercepts closer to the regional groundwater tem-

perature and low slopes. Inversely, streams more sensitive to climate

conditions have steeper slopes and lower intercepts closest to Ta.

Our TS and b range were consistent with other studies results for

linear regression models using a weekly time scale (Table 3). These TS

and b values were close to those found by Webb (1992), Stefan and

Preud'homme (1993), and Morrill et al. (2005) except that we observe

no negative b and the range of our TS and b is slightly higher

(Figure 8). This can be explained by a higher number of streams used

in our study and by the larger size of the watershed compared with

other studies (Table 3). O'Driscoll and DeWalle (2006), Kelleher et al.

(2012), and Krider et al. (2013) obtained lower values of TS and higher

b values for their studied streams located in karst basins.

4.2 | Groundwater influence on TS

In theory, groundwater influence is more visible on smaller streams

because the volume of water is small and the travel time of the water

from the source is short and not sufficient to equilibrate Tw with the

atmosphere (Beaufort et al., 2016; Mohseni & Stefan, 1999). Ground-

water inflow is a heat source during winter and a heat sink during

summer resulting in little seasonal variation in Tw and a low TS

(Hannah, Malcolm, Soulsby, & Youngson, 2004; Kelleher et al., 2012).

Stations with a thermal regime ColdLowVar have low TS (median TS =

0.5) and a high intercept (median b = 5.7�C). In other studies, low TS

could be due to the upstream influence of reservoirs or impound-

ments (Erickson & Stefan, 2000; Morrill et al., 2005) or to high

groundwater contribution (Kelleher et al., 2012). The 13 stations from

the thermal regime ColdLowVar have a reduced annual variation of

Tw (blue area; Figure 5a), and their low TS could be reasonably related

to the groundwater inflows that decrease Tw response to changes in

Ta and increase the thermal inertia of streams (O'Driscoll & DeWalle,

2004). This statement is reinforced by their location on small streams

above the main aquifer formations (Figure 4).

CART model results showed that all stations of the thermal regime

ColdLowVar have BFI greater than 0.8, which seems to confirm T
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groundwater influences (C1 and C4; Figure 7). The decrease of TS is

accentuated when a high BFI is combined with an SF higher than 30%

as on the 11 stations in C1 (mean TS = 0.5). The shading of riparian

vegetation leads to increase the thermal moderation of surface water

in summer by shading from solar radiation. The BFI appears as a very

influential variable in TS (Figure 6). However, in the Loire basin, TS

remains greater than 0.4 even when the BFI is higher than 0.8 and

when b is higher than 6�C. In other studies, TS values are close to

0 when the BFI is close to 1 (Kelleher et al., 2012). It could be

suspected that the temperature of groundwater inflows feeding

streams follows a seasonal trend correlated with Ta and more marked

than those observed in the literature (Kelleher et al., 2012; Krider

et al., 2013; O'Driscoll & DeWalle, 2006). This could also explain the

high residuals of slope intercept regression for stations having a TS

lower than 0.6 (Figure 3a).

The variable QAug is the mean specific discharge during the warm-

est month and represents the sustainability of low flows. It is a moder-

ately influential variable in TS (Figure 6). It can be assumed that a

stream with a high QAug, in the case of natural flowing, benefits from

groundwater inflows and/or of important contribution of its tribu-

taries allowing it to maintain a sufficient depth to moderate Tw in

summer. CART analysis results showed that streams with a QAug value

higher than 5 L s−1 km−2, associated to an SF less than 30% and a BFI

less than 0.8, have a lower TS than others stations (C2 vs. C3;

Figure 7), which seems to confirm our assumption. However, the

importance of QAug remains applies to a subset of stations and the BFI

remains the main variable representing the influence of groundwater

inflows in our dataset.

4.3 | Riparian shading influence on TS

Shortwave (solar) radiation is one of the most influential factors that

influence stream temperature and is related directly to the amount of

shading provided by riparian vegetation (O'Driscoll & DeWalle, 2006;

Sinokrot & Stefan, 1993). The riparian vegetation captures solar

radiation and leads to reduced Tw resulting in a decrease of TS. This

effect is particularly visible in summer when the solar radiation is

the strongest and represents the main source of energy inputs

(e.g., Hannah, Malcolm, Soulsby, & Youngson, 2008). In addition, the

riparian vegetation of the Loire basin is mainly composed of decidu-

ous trees, which considerably limit the effect of shading in winter.

The influence of the riparian vegetation shading on TS was

highlighted by several studies (Chang & Psaris, 2013; Dugdale et al.,

2018; Garner, Malcolm, et al., 2017; Hrachowitz et al., 2010;

F.L. Jackson et al., 2017; Loicq et al., 2018). However, it is still com-

plex to characterize the own effect of riparian shading, and shading

effect is regularly lumped to other drivers of TS moderation

(Kelleher et al., 2012; O'Driscoll & DeWalle, 2006).

In our study, we tried to differentiate the effects of shading and of

groundwater inflows. The only study of TS and b does not allow to

clearly make this distinction because the effect of riparian vegetation

shading could be mixed with the effect of groundwater inflows. The

ΔTJan and ΔTAug were introduced in the AHC model to help make this

distinction. Stations in thermal regime WarmHighVar have a high TS

(TS > 0.8) combined to a small intercept (b < 3.5�C) and are supposed

the most influenced by climate and Ta. Their amplitude and magnitude

of MTa and MTw are very similar and follow the same trend (ampli-

tude of 18�C; Figure 5a) and do not seem to be moderated by any

drivers. Stations in thermal regime ColdHighVar have a lower TS (TS <

0.8) and slightly higher intercept (median b = 2.9�C) than in thermal

regime WarmHighVar (Table 1). Between thermal regimes Cold-

HighVar and WarmHighVar, their ΔTJan is similar (ΔTJan = −1.6�C), but

Tw is clearly lower than Ta during August for stations in thermal

regime ColdHighVar (median ΔTAug = 1.9). The influence of the ripar-

ian vegetation shading is suspected. CART model results seems to

confirm this assumption because all stations in ColdHighVar were

identified with an SF higher than 30% (C2 and C4; Figure 7). The

effects of shading could be accentuated when the specific discharge

in August is higher than 5 L s−1 km−2 (C2; TS ≈ 0.67) because the

thermal inertia of the streams is increased.

4.4 | Landscape factors influence

The distance from the source (D) is a key driver of TS (Figure 6).

CART model results showed that stations with a D higher than

120 km obtained the highest TS (TS = 1; C7; Figure 7). D is highly

positively correlated with the drainage area, and several studies

identified this driver as playing an important role in the TS of rivers

(Chang & Psaris, 2013; Garner et al., 2014; Hrachowitz et al., 2010;

Imholt et al., 2013). Some others studies have also identified the

Strahler order, which is correlated to D (R2 = 0.6), as a strong influ-

ence factor of TS (Chang & Psaris, 2013; Ducharne, 2008; Kelleher

et al., 2012; Wehrly, Wiley, & Seelbach, 1998). Streams with a

high D and a large drainage area are weakly dependent on upstream

conditions, and the travel time of the water body between upstream

and downstream allows Tw to equilibrate with Ta (Mohseni &

Stefan, 1999), leading to increase TS. Also, a longer D and a larger

F IGURE 8 Representation of the range of TS and b found in
reviewed publications for linear regression models of weekly Ta–Tw
relationship
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catchment area corresponds to lower topographical slopes, slower

flow velocities, and greater regional residence time, which allow

more time for Tw to adjust to local Ta (Mayer, 2012).

Stations located on small and medium streams, not influenced by

shading and groundwater inflows (SF < 30%; BFI < 0.8; and D <

120 km) belonging to cluster C5 and C6 (Figure 7), obtained a TS less

than those of large rivers in C7. There is an influence of S because sta-

tions located on streams with a high slope (S < 2.5 m km−1) had a

mean TS of 0.8 (C5; Figure 7), whereas others had a mean TS of 0.88

(Cluster C6; Figure 7). The stream slope is mostly linked to elevation

(R2 = 0.65). A higher slope increases the flow velocity, and the eleva-

tion influences Tw over the adiabatic lapse rates of Ta (Hrachowitz

et al., 2010) and also through snow and glacier meltwater inflow

(Arora, Toffolon, Tockner, & Venohr, 2018; Morrill et al., 2005), which

may contribute to decrease TS. P and PET are not relevant in CART

model, which may be explained by the relative climatic homogeneity

of the study area (Cfb = temperate oceanic climate, Table 3).

4.5 | Implication for river management and river
restoration

The study of streams TS makes it possible to identify the most sensi-

tive streams to environmental change (high TS) and potentially the

most sensitive to the effects of climate change. The stationarity of all

processes influencing Tw is difficult to estimate because it implies the

use of physically based models directly integrating energy fluxes

because the only study of TS tends to underestimate the warming of

climate change (Leach & Moore, 2019). However, streams studied

here have a natural thermal regime and are not influenced by anthro-

pogenic activities. These natural streams sensitive to environmental

changes in the present time (high TS) will always be sensitive to envi-

ronmental changes in the future without human actions. The goal of

our approach is to identify the most climate-sensitive streams, linking

them to environmental or hydrological features, to guide stakeholders

to pay particular attention to them.

Our analysis identified D, BFI, and SF as the main factors influenc-

ing TS in the Loire basin. The major streams of the Loire catchment

(D > 120 km) show the highest TS value (mean TS = 1) and appear

highly sensitive to the effects of global warming. For these streams

having a large wet width (>50 m), the effects of shading from riparian

vegetation are very small, and actions to reduce TS are limited. Ther-

mal anomalies could be detected by aerial infrared survey

(Wawrzyniak, Piégay, & Poirel, 2012) and be preserved by limiting

advective thermal mixing (Kurylyk et al., 2015) or activated by geo-

morphological restoration of streams (Eschbach et al., 2017; Loheide &

Gorelick, 2006). On small and medium streams, it is necessary to pre-

serve and/or favour the presence of riparian vegetation to moderate

TS (Fabris, Malcolm, Buddendorf, & Soulsby, 2018). The effects will be

most pronounced, in comparison with large streams, because of their

smaller width, but investments have to be made strategically (Isaak

et al., 2017; Johnson & Wilby, 2015). From a watershed management

perspective, stream shading would be less effective in streams where

Tw is already strongly moderated by groundwater inflows but more

effective along losing reaches or stream reaches distant from ground-

water inflows (O'Driscoll & DeWalle, 2006).

Streams with a low TS have a limited surface water heating during

summer and may provide thermal refuges for thermo-sensitive aquatic

species (macroinvertebrates, stream-dwelling amphibians, and fish

species; Isaak et al., 2017). In order to limit these warmings and pre-

serve ecosystems, it seems important to identify streams constituting

cold-water thermal refuges (with low TS) and to restore and preserve

thermal diversity in the hydrographical network (Torgersen,

Ebersole, & Keenan, 2012). However, the main factors limiting TS (BFI

and SF) could change in the future, and several streams could become

much more sensitive to environmental change (Leach & Moore,

2019). For example, the loss in groundwater inflows would result in

greater meteorological controls increasing the annual amplitude of Tw

(O'Driscoll & DeWalle, 2006). Limiting water abstraction during low-

flow periods may avoid a disconnection of groundwater/surface water

exchanges and ensure environmental flows during the summer

(Elmore, Null, & Mouzon, 2016). Some cooling strategies proposed to

reconnect streams to floodplains and to facilitate greater lateral and

hyporheic flow exchanges (Beechie et al., 2012; Daniel Caissie & Luce,

2017; Kurylyk et al., 2015) but need to be tested at a regional scale.

To apply efficient and effective actions, river managers have to focus

on small and medium streams and can use the environmental variables

identified in our classification results as indicators to assess the cli-

mate sensitivity of unmonitored streams.

5 | CONCLUSION

In this study, we proposed a framework to compare thermal sensitiv-

ity (TS) for 127 stations located on temperate streams between 2008

and 2012 and to cluster stations sharing similar natural thermal

regimes, not influence by anthropogenic effects. On the basis of

weekly Ta–Tw relationships, four thermal regimes were identified with

differing annual Tw in terms of magnitude and amplitudes in compari-

son with Ta. We linked each cluster to different environmental con-

trolling factors as inferred by TS. This highlighted that shading from

riparian vegetation, groundwater inflows, and the distance from the

source of streams were the main drivers of the moderation of streams

located in the Loire catchment. Streams influenced by both ground-

water inflows and shading are the most moderated with the lowest TS

and an annual amplitude of Tw around half the annual amplitude of

Ta. Inversely, stations located on large streams or on streams slightly

or not influenced by groundwater inflows and/or shading showed the

highest TS and are very climate sensitive. Their Tw amplitude and

magnitude were very close to those of Ta; consequently, these rivers

are deemed the most sensitive to the effects of future climate change.

The Tw metrics and the environmental variables remain simple to

determine and can easily be applied in others catchments at a regional

scale. One of the perspectives to this work would be to explore if main

controlling factors of the Tw variability identified here are the same in

different climate and physiographical regions elsewhere. We observe

that almost invariability streams studied in reviewed publications for
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linear regression models of weekly Ta–Tw relationship (Table 3) corre-

spond to temperate and continental climatic regions. It would be inter-

esting to study streams from different climatic contexts to understand

how controls of TS may vary. Furthermore, it would be insightful to

explore how TS may be modified by anthropogenic effects (dams,

weirs, and other flow augmentation/abstractions, etc.). Management

agencies can use our findings on thermal sensitivity for prioritizing res-

toration areas to moderate stream temperature and undertake mitiga-

tion and adaptation actions to protect sensitive aquatic species in the

context of a changing environment.
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